• Title/Summary/Keyword: Electroplating

Search Result 633, Processing Time 0.026 seconds

Ni Electroplating in the Emulsions of Supercritical $CO_2$ Formed by Ultrasonar (초음파를 이용한 초임계 이산화탄소 에멀젼내 Ni 전해도금)

  • Koh M. S.;Joo M. S.;Park K. H.;Kim H. D.;Kim H. W.;Han S. H.;Sato Nobuaki
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.344-349
    • /
    • 2004
  • Emulsions were formed through putting small quantity of nickel electroplating solution into supercritical carbon dioxide, and then electroplating in the $sc-CO_2$ emulsions was conducted. It is an environmental-friendly technology that can solve the treatment of a large quantity of toxic plating wastewater, which is a big problem in the existing wet plating, and also can reduce secondary waste generation fundamentally. Supercritical carbon dioxide emulsions enhanced by ultrasonic horn were formed by non-ionic surfactant and nickel solution. Plating condition within emulsions was set up as 120bar and $55^{\circ}C$ through measurement of electrical conductivity following the pressure change. Experiments were conducted respectively against supercritical carbon dioxide emulsions electroplating and general chemical electroplating, and then their results were compared and analyzed. As the experiment result utilizing emulsions, plating surface was formed very evenly even with a small quantity of electroplating solution, and fine particles were plated compactly without any pinhole or crack due to hydrogenation, which occurs in general electroplating. Used electroplating solution can be reused through recovery process. Therefore, this technology will be able to be applied as new clean technology in electro-plating.

Preparation and Characterization of Mesoporous Ni Film Made by Electroplating Method (전착법을 이용한 메조포러스 니켈 필름의 제조와 특성 분석)

  • Lee, Ji-Hoon;Baik, Young-Nam;Kim, Young-Seok;Shin, Seung-Han
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.16-22
    • /
    • 2007
  • Recently, mesoporous metallic materials are becoming more and more important in various applications like catalysts, electrochemical detectors, batteries, and fuel cells because of their high surface area. Among the various methods for manufacturing mesoporous structure, surfactant templating method followed by electroplating has been tried in this study. A mesoporous metallic film was prepared by electrodeposition from electroplating solution mixed with surfactant template. Nonionic type lyotropic liquid crystalline surfactant, Brij56, and nickel acetate based solution were selected as a template material and electroplating solution, respectively. To determine the content of surfactant forming a hexagonal column structure, the phase diagram of electroplating solution and surfactant mixture has been exploited by polarized optical microscopy equipped with heating and cooling stage. Nickel films were electroplated on Cu foil by stepwise potential input method to alleviate the concentration polarization occurred during the electroplating process. TEM and XRD analyses were performed to characterize the size and shape of mesostructures in manufactured nickel films, and electrochemical characterization was also carried out using cyclic voltammetry.

Effects of Electroplating Condition on Micro Bump of Multi-Layer Build-Up PCB (다층 PCB 빌드업 기판용 마이크로 범프 도금에 미치는 전해조건의 영향)

  • Seo, Min-Hye;Hong, Hyun-Seon;Jung, Woon-Suk
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.117-122
    • /
    • 2008
  • Micro-sized bumps on a multi-layered build-up PCB were fabricated by pulse-reverse copper electroplating. The values of the current density and brightener content for the electroplating were optimized for suitable performance with maximum efficiency. The micro-bumps thus electroplated were characterized using a range of analytical tools that included an optical microscope, a scanning electron microscope, an atomic force microscope and a hydraulic bulge tester. The optical microscope and scanning electron microscope analyses results showed that the uniformity of the electroplating was viable in the current density range of $2-4\;A/dm^2$; however, the uniformity was slightly degraded as the current density increased. To study the effect of the brightener concentration, the concentration was varied from zero to 1.2 ml/L. The optimum concentration for micro-bump electroplating was found to be 0.6 ml/L based on an examination of the electroplating properties, including the roughness, yield strength and grain size.

Manufacturing of Ni-63 Sealed Source for Betavoltaic Battery Using the Small-scale Electroplating Device (소형 전기도금장치를 이용한 베타전지용 Ni-63 밀봉선원 제작)

  • Kim, Jin Joo;Choi, Sang Mu;Son, Kwang Jae;Hong, Jintae
    • Journal of Radiation Industry
    • /
    • v.11 no.3
    • /
    • pp.173-179
    • /
    • 2017
  • The small-scale electroplating device was designed and fabricated for Ni-63 sealed source (foil type) with a high specific activity needed for production of betavoltaic battery. The condition of Ni electroplating was optimized by using fabricated electroplating device to establish a Ni-63 electroplating condition on the Ni foil. The results showed that the optimum surface morphology and thickness of Ni deposit was obtained for 1,758 seconds at a current density of $15mA{\cdot}cm^{-2}$ with 0.5% tween 20. Radioisotope Ni-63 electroplating was implemented under established condition. The radioactivity of Ni-63 sealed source was calculated to $28mCi{\cdot}cm^{-2}$, and the thickness of Ni-63 deposit was about $2.4{\mu}m$.

The Effect of Pulse Plating on the Current Efficiency in Trivalent Chromium Bath (3가크롬 도금욕에서 펄스도금조건이 전류효율에 미치는 영향)

  • 황경진;안종관;이만승;오영주
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.161-167
    • /
    • 2003
  • In order to investigate the effects of pulse plating conditions on the electrodeposition of trivalent chromium, electroplating experiments from bath with low concentration of trivalent chromium were performed. The variation of current efficiency of chromium electroplating with the electroplating conditions was explained. The maximum current efficiency of pulse plating is 6.4 times as high as that of direct plating at the same mean current density The nodular size increased with pulse plating time and the pulse frequency.

THE EFFECTS OF ADDITIVES IN NICKEL AND COPPER ELECTROPLATING FOR MICROSTRUCTURE FABRICATION

  • Kim, Go-Eun;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.214-218
    • /
    • 1999
  • The effect of additives in nickel and copper electroplating were investigated for MEMS applications. Saccharin and gelatin were used as additives in nickel and copper electroplating bath respectively. The morphology and surface hardness of electroplated coating were investigated with additive concentration. Microstructures were fabricated with optimum conditions.

  • PDF

Fabrication of Micro-inductor and Capacior For RF MEMS Applications

  • Cho, Bek-Hee;Lee, Jae-Ho;Bae, Young-Ho;Cho, Chan-Sub;Lee, Jong-Hyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.102-110
    • /
    • 2002
  • In this paper, we present the fabrication of tunable capacitors and 3-dimensional inductors. This work was related to fabricated 3-dimensional device for need of micro device in developing new intelligence age. This device was fabricated by electroplating used electroplating PR and high-vacuum evaporation of metal. Fabricated micro-inductor is consisted of air-bridge on electroplating rod and electroplated core. Micro-capacitor is consisted of thin metal membrane and electroplated core. Electroplating material is used Cu metal solvent. Air-gap between metal-layers function as almost perfect isolation layer. The most advantage of our micro-inductor and micro-capacitor compared to present device is a possibility that can fabricate on RF MEMS(microelectro-mechanical systems) application with high performance and various function. In this paper, we present the fabrication of tunable capacitors and 3-dimensional inductors. This work was related to fabricated 3-dimensional device for need of micro-device in developing new intelligence age. This device was fabricated by electroplating used electroplating PR and high-vacuum evaporation of metal. Fabricated micro-inductor is consisted of air-bridge on electroplating rod and electroplated core. Micro-capacitor is consisted of thin metal membrane and electroplated core. Electroplating material is used Cu metal solvent. Air-gap between metal-layers function as almost perfect isolation layer. The most advantage of our micro-inductor and micro-capacitor compared to present device is a possibility that can fabricate on RF MEMS application with high performance and various functions.

Effects of Plasma Pretreatment of the Cu Seed Layer on Cu Electroplating (Cu seed layer 표면의 플라즈마 전처리가 Cu 전기도금 공정에 미치는 효과에 관한 연구)

  • O, Jun-Hwan;Lee, Seong-Uk;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.802-809
    • /
    • 2001
  • Electroplating is an attractive alternative deposition method for copper with the need for a conformal and conductive seed layer In addition, the Cu seed layer should be highly pure so as not to compromise the effective resistivity of the filled copper interconnect structure. This seed layer requires low electrical resistivity, low levels of impurities, smooth interface, good adhesion to the barrier metal and low thickness concurrent with coherence for ensuring void-free fill. The electrical conductivity of the surface plays an important role in formation of initial Cu nuclei, Cu nucleation is much easier on the substrate with higher electrical conductivities. It is also known that the nucleation processes of Cu are very sensitive to surface condition. In this study, copper seed layers deposited by magnetron sputtering onto a tantalum nitride barrier layer were used for electroplating copper in the forward pulsed mode. Prior to electroplating a copper film, the Cu seed layer was cleaned by plasma H$_2$ and $N_2$. In the plasma treatment exposure tome was varied from 1 to 20 min and plasma power from 20 to 140W. Effects of plasma pretreatment to Cu seed/Tantalum nitride (TaN)/borophosphosilicate glass (BPSG) samples on electroplating of copper (Cu) films were investigated.

  • PDF

Effects of Chloride Concentration on Zinc Electroplating (염화물의 농도가 전기아연도금에 미치는 영향)

  • Kim, Jae-Min;Lee, Jung-Hoon;Kim, Yong-Hwan;Kim, Young-Ha;Hong, Moon-Hi;Jeong, Hwon-Woo;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • The zinc electroplating with respect to the chloride concentration was investigated by X-ray diffraction(XRD), scanning electron microscope (SEM), and cathodic polarization measurement. The cathodic overpotential during electroplating was first decreased and then increased with increase of chloride concentration in electrolyte. The decreased cathodic overpotential leads to preferred orientation of (002) plane, high current efficiency and satisfactory zinc deposits. The increased cathodic overpotential causes random orientation, low current efficiency and edge burning. The cathodic overpotential was affected by chloride concentration in electrolyte, not by the kind of chloride, such as NaCl and KCl. An optimized chloride concentration was 3 M for zinc electroplating. Also, it is considered that NaCl can be a alternation for KCl as a main salt of zinc electroplating bath.