DOI QR코드

DOI QR Code

THz Optical Properties of Pr3+-Doped Selenide Glasses

Pr3+ 도핑된 셀레나이드 유리의 테라헤르츠 광학 특성

  • 강승범 (한국탄소융합기술원) ;
  • 정동철 (한국탄소융합기술원) ;
  • 곽민환 (창원문성대학교 전기공학과)
  • Received : 2017.09.24
  • Accepted : 2017.10.16
  • Published : 2017.11.01

Abstract

Terahertz time-domain spectroscopy has been used to study the optical properties of $Pr^{3+}-doped$ selenide glasses. The complex refractive indexes of $Pr^{3+}-selenide$ glasses were measured in a frequency range from 0.3 to 1.5 THz. The real and imaginary refractive indexes increased with increasing frequency and $Pr^{3+}$ ion concentration. The obtained result indicated that the phonon modes of the $Pr^{3+}-doped$ selenide glasses shift to lower frequencies with the concentration of $Pr^{3+}$ ions. The theory of far-infrared absorption in amorphous materials was used to analyze the results. The measured data showed that the disorder-induced terahertz absorption increased with increasing $Pr^{3+}$ ion concentration.

Keywords

References

  1. D. Lezal, J. Pedlikova, J. Zavadil, P. Kostka, and M. Poulain, J. Non-Cryst. Solids, 326, 47 (2003). [DOI: https://doi.org/10.1016/S0022-3093(03)00375-2]
  2. V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, Opt. Mater., 31, 39 (2008). [DOI: https://doi.org/10.1016/j.optmat.2008.01.005]
  3. J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, J. Non-Cryst. Solids, 140, 199 (1992). [DOI: https://doi.org/10.1016/S0022-3093(05)80767-7]
  4. J. S. Sanghera and I. D. Aggarwal, J. Non-Cryst. Solids, 256, 6 (1999). [DOI: https://doi.org/10.1016/S0022-3093(99)00484-6]
  5. A. Zakery and S. R. Elliott, J. Non-cryst. Solids, 330, 1 (2003). [DOI: https://doi.org/10.1016/j.jnoncrysol.2003.08.064]
  6. B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, J. Lumin., 128, 1617 (2008). [DOI: https://doi.org/10.1016/j.jlumin.2008.03.011]
  7. Y. G. Choi, B. J. Park, K. H. Kim, and J. Heo, Electron. Telecommun. Res. Inst., 23, 97 (2001). [DOI: https://doi.org/10.4218/etrij.01.0101.0301]
  8. W. J. Chung, H. S. Seo, B. J. Park, J. T. Ahn, and Y. G. Choi, Electron. Telecommun. Res. Inst., 27, 411 (2005). [DOI: https://doi.org/10.4218/etrij.05.0105.0005]
  9. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, IEEE J. Quantum Electron., 37, 1127 (2001). [DOI: https://doi.org/10.1109/3.945317]
  10. M. Naftaly and R. E. Miles, J. Non-Cryst. Solids, 351, 3341 (2005). [DOI: https://doi.org/10.1016/j.jnoncrysol.2005.08.003]
  11. S. Kojima, H. Kitahara, S. Nishizawa, Y. S. Yang, and M. W. Takeda, J. Mol. Struct., 744, 243 (2005). [DOI: https://doi.org/10.1016/j.molstruc.2004.10.045]
  12. S. B. Kang, M. H. Kwak, B. J. Park, S. Kim, H. C. Ryu, D. C. Chung, S. Y. Jeong, D. W. Kang, S. K. Choi, M. C. Paek, E. J. Cha, and K. Y. Kang, Electron. Telecommun. Res. Inst., 31, 667 (2009). [DOI: https://doi.org/10.4218/etrij.09.1209. 0028]
  13. T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, J.. Opt. Soc. Am. A, 18, 1562 (2001). [DOI: https://doi.org/10.1364/JOSAA.18.001562]
  14. E. Schlomann, Phys. Rev., 135, A413 (1964). [DOI: https://doi.org/10.1103/PhysRev.135.A413]
  15. U. Strom, J. R. Hendrickson, R. J. Wagner, and P. C. Taylor, Solid State Commun., 15, 1871 (1974). [DOI: https://doi.org/10.1016/0038-1098(74)90106-9]