DOI QR코드

DOI QR Code

Piezoelectric Characteristics of PZT-Based PZN-PNN-PZT Piezoelectric Devices According to Various Conditions

PZT 기반의 PZN-PNN-PZT 압전 소자의 다양한 조건에 따른 압전 특성 변화

  • Choi, Jeoung Sik (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Chang Hyun (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyo Soon (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Dong Hun (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Joon Hyung (Department of Electronic Materials Science and Engineering, School of Materials Science and Engineering, Kyungpook National University)
  • 최정식 (한국세라믹기술원 전자융합소재본부) ;
  • 이창현 (한국세라믹기술원 전자융합소재본부) ;
  • 신효순 (한국세라믹기술원 전자융합소재본부) ;
  • 여동훈 (한국세라믹기술원 전자융합소재본부) ;
  • 이준형 (경북대학교 신소재공학부 전자재료공학)
  • Received : 2017.08.22
  • Accepted : 2017.10.13
  • Published : 2017.11.01

Abstract

$Pb(Zr,\;Ti)O_3$ (PZT) is a piezoelectric material applied in a typical actuator and has been actively studied. However, in order to overcome the limitations of PZT, piezoelectric ceramics comprising mixed solid solutions of PZT with various relaxer electric materials have been studied. The $Pb(Zn_{1/3}Nb_{2/3})-Pb(Ni_{1/3}Nb_{2/3})-Pb(Zr,\;Ti)O_3$ (PZN-PNN-PZT) piezoelectric ceramic, known to have high piezoelectric constant and electromechanical coupling coefficient, was studied herein. The piezoelectric characteristics with various Zr contents (Zr/Ti ratios), PZN molar ratios, and sintering temperatures were compared. The piezoelectric properties of $d_{33}=580pC/N$ and $k_P=0.68$ were obtained with the $0.1PZN-0.2PNN-0.7PbZr_{0.46}Ti_{0.54}O_3$ composition sintered at $1,290^{\circ}C$.

Keywords

References

  1. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971) p. 135.
  2. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science, 311, 1270 (2006). [DOI: https://doi.org/10.1126/science.1123811]
  3. A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (John Wiley and Sons Ltd., USA, 2003).
  4. H. Chen, J. Long, and Z. Meng, Mater. Sci. Eng., B, 99, 433 (2003). [DOI: https://doi.org/10.1016/S0921-5107(02)00448-8]
  5. F. Kahoul, L. Hamzioui, and A. Boutarfaia, Energy Procedia, 50, 87 (2014). [DOI: https://doi.org/10.1016/j.egypro.2014.06.011]
  6. S. Mahajan, O. P. Thakur, and C. Prakash, Defence Science Journal, 57, 23 (2007). [DOI: https://doi.org/10.14429/dsj.57.1724]
  7. C. Lei, K. Chen, X. Zhang, and J. Wang, Solid State Commun., 123, 445 (2002). [DOI: https://doi.org/10.1016/S0038-1098(02)00371-X]
  8. P. D. Gio and V. D. Dan, J. Alloys Compd., 449, 24 (2008). [DOI: https://doi.org/10.1016/j.jallcom.2006. 02.116]
  9. C. B. Yoon, S. H. Lee, S. M. Lee, and H. E. Kim, J. Eur. Ceram. Soc., 26, 2345 (2006). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.04.003]
  10. N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, and D. P. Cann, J. Mater. Res., 18, 2882 (2011). [DOI: https://doi.org/10.1557/JMR.2003.0402]