DOI QR코드

DOI QR Code

Rapid Detection of Radioactive Strontium in Water Samples Using Laser-Induced Breakdown Spectroscopy (LIBS)

Laser-Induced Breakdown Spectroscopy (LIBS)를 이용한 방사성 스트론튬 오염물질에 대한 신속한 모니터링 기술

  • Park, Jin-young (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Hyun-a (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Park, Kihong (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Kyoung-woong (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
  • 박진영 (광주과학기술원 지구.환경공학부) ;
  • 김현아 (광주과학기술원 지구.환경공학부) ;
  • 박기홍 (광주과학기술원 지구.환경공학부) ;
  • 김경웅 (광주과학기술원 지구.환경공학부)
  • Received : 2017.10.12
  • Accepted : 2017.10.30
  • Published : 2017.10.28

Abstract

Along with Cs-137 (half-life: 30.17 years), Sr-90 (half-life: 28.8 years) is one of the most important environmental monitoring radioactive elements. Rapid and easy monitoring method for Sr-90 using Laser-Induced Breakdown Spectroscopy (LIBS) has been studied. Strontium belongs to a bivalent alkaline earth metal such as calcium and has similar electron arrangement and size. Due to these similar chemical properties, it can easily enter into the human body through the food chain via water, soil, and crops when leaked into the environment. In addition, it is immersed into the bone at the case of human influx and causes the toxicity for a long time (biological half-life: about 50 years). It is a very reductive and related with the specific reaction that makes wet analysis difficult. In particular, radioactive strontium should be monitored by nuclear power plants but it is very difficult to be analysed from high-cost problems as well as low accuracy of analysis due to complicated analysis procedures, expensive analysis equipment, and a pretreatment process of using massive chemicals. Therefore, we introduce the Laser-Induced Breakdown Spectroscopy (LIBS) analysis method that analyzes the elements in the sample using the inherent spectrum by generating plasma on the sample using pulse energy, and it can be analyzed in a few seconds without preprocessing. A variety of analytical plates for samples were developed to improve the analytical sensitivity by optimizing the laser, wavelength, and time resolution. This can be effectively applied to real-time monitoring of radioactive wastewater discharged from a nuclear power plant, and furthermore, it can be applied as an emergency monitoring means such as possible future accidents at a nuclear power plants.

Cs-137 (반감기 : 30.17년)과 더불어 중요한 원자력발전소 주변 환경감시대상 방사성 핵종 가운데 하나인 순수한 베타방출체인 Sr-90 (반감기 : 28.8년)에 대한 신속하고 용이한 모니터링 방법을 연구하였다. 스트론튬은 칼슘과 같은 2족 알칼리 토금속에 속해 있어서 전자배치나 크기가 비슷하며 최외각전자를 2개 가지고 있기 때문에 화학적으로 칼슘과 치환될 수 있다. 이러한 유사한 화학적 성질로 인해서 환경으로 유출시 물, 토양 및 농작물을 통한 먹이사슬을 거쳐서 인체로 쉽게 유입될 수 있으며, 인체 유입 시 뼈에 쉽게 침적되어 장기간 (생물학적 반감기 : 약 50년) 동안 독성을 유발한다. 스트론튬은 매우 환원성이 있고 특이 반응으로 습식분석이 어려우며, 특히 원자력발전소에서 감시하고 있는 방사성 스트론튬은 복잡한 분석절차, 고가의 분석 장비 사용 및 화학 전처리약품 다량 사용 등으로 분석의 정확도 저하는 물론 고비용에 따른 문제를 안고 있다. 따라서 펄스에너지를 사용하여 시료에 플라즈마를 생성시켜 고유 스펙트럼을 이용해 시료내 원소를 분석하는 Laser-Induced Breakdown Spectroscopy (LIBS) 분석기법을 도입하여 전처리 과정 없이 수 초 내에 분석이 가능하고 현장에서 실시간으로 측정 가능한 스트론튬 원소의 정량분석 방법을 도출하였다. 다양한 분석에 필요한 시료기판을 개발하여 레이저, 파장 및 시간분해능의 최적화로 분석 감도를 향상시키고 방해이온에 대한 영향 평가로 액체시료의 정량분석을 가능하게 하여 신속한 모니터링 체계를 구축하게 하였다. 이는 원자력발전소로부터 방출되고 있는 방사성 폐수의 실시간 모니터링에 효과적으로 적용될 수 있으며, 더 나아가 후쿠시마 원전사고와 같은 비상시 모니터링 수단으로 적용 될 수 있다.

Keywords

References

  1. Al-Adel, F. F., Dastageer, M. A., Gasmi, K. and Gondal, M. A. (2013) Optimization of a laser induced breakdown spectroscopy method for the analysis of liquid samples. Journal of applied spectroscopy, v.80, p.767-780. https://doi.org/10.1007/s10812-013-9839-8
  2. Anabitarte, F., Cobo, A. and Lopez-Higuera, J. M. (2012) Review Article Laser-Induced Breakdown Spectroscopy: Fundamentals, Applications and Challenges. International Scholarly Research Network ISRN Spectroscopy, v.2012, p.1-12.
  3. Bhatt, C. R., Alfarraj, B., Ayyalasomayajula, K. K., Ghany, C., Yueh, F. Y. and Singh, J. P. (2015) Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS). Applied optics, v.54, p.34.
  4. Cabrera, W. E., Schrooten, I., Broe, M. D. and D'HAESE. P. C. (1999) Strontium and Bone Review. Journal of Bone and Mineral Research, v.14, p.661-668. https://doi.org/10.1359/jbmr.1999.14.5.661
  5. Caceres, J.O., Lopez, J. T., Telle, H. H. and Urena, A. G. (2001) Quantitative analysis of trace metal ions in ice using laser-inducd breakdown spectroscopy. Spectrochimica Acta Part B, v.56, p.831-838. https://doi.org/10.1016/S0584-8547(01)00173-2
  6. Casacuberta, N., Masque, P., Garcia, O. J., Garcia, T. R. and Buesseler, K. (2013) $^{90}Sr$ and $^{89}Sr$ in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident. Biogeosciences, v.10, p.3649-3659. https://doi.org/10.5194/bg-10-3649-2013
  7. Chen, Z., Godwal, Y., Tsui, Y. Y. and Fedosejevs, R. (2010) Sensitive detection of metals in water using laserinduced breakdown spectroscopy on wood sample substrates. Applied Optics, v.49, p.87-94. https://doi.org/10.1364/AO.49.000C87
  8. Deloitte Consulting. (2015) A great stepping stone. Deloitte analysis. 2p.
  9. Groska, J., Molnar, Z., Bokori, E. and Vajda, N. (2012) Simultaneous determination of $^{89}Sr$ and $^{90}Sr$: comparison of methods and calculation techniques. Journal of Radio analytical NuclearChemistry, v.291, p.707-715. https://doi.org/10.1007/s10967-011-1418-y
  10. Hahn, D. W. and Omenetto, N. (2012) Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Applied spectroscopy, v.66. p.347-419. https://doi.org/10.1366/11-06574
  11. Huang, L., Yao, M., Xu, Y. and Liu, M. (2013) Determination of Cr in water solution by laser-induced breakdown spectroscopy with different univariate calibration models. Applied Physics B Lasers Optics, v.111, p.45-51. https://doi.org/10.1007/s00340-012-5305-1
  12. Jung, E. C., Lee, D. H. Yun, J..I., Kim, J. G., Yeon, J. W. and Song, K. (2011) Quantitative determination of uranium and europium in glass matrix by laserinduced breakdown spectroscopy. Elsevier Science, v.66, p.761-764.
  13. Jung, Y. H., Kim, H. C., Suh, K. S., Kang, M. J. and Chung, K. H. (2015) Optimization of Radiostrontium Separation Process Using Sr Resin. Journal of Nuclear Fuel Cycle and Waste Technology, v.13, p.123-130. https://doi.org/10.7733/jnfcwt.2015.13.2.123
  14. Kim, G. B., Kwak, J. H., Kim, K. R., Lee, H. S., Kim, K. W., Yang, H. O. and Park, K. H. (2013) Rapid detection of soils contaminated with heavy metals and oil by laser induced breakdown spectroscopy (LIBS). Journal of Hazardous Materials, v.263, p.754-760. https://doi.org/10.1016/j.jhazmat.2013.10.041
  15. Kim, J. H., Lee, S. W. and Min, C. S. (2016) Environmental Statistics & Data Analysis. Hannara Academy. p.212-214.
  16. Korea Institute of Nuclear Safety. (2015) Marine environmental radioactivity survey. 3p.
  17. Lee, G. J., Hwang, J. L. and Chung, W. K. (1999) A Study on the Environmental Radioactive Strontium Analysis. Journal of Association Radiation Protection, v.24, p.155-160.
  18. Maxwell, S. L., Culligan, B. K. and Shaw, P. J. (2013) Rapid determination of radiostrontium in large soil samples. Journal of Radioanalytical and Nuclear Chemistry, v.295, p.965-971. https://doi.org/10.1007/s10967-012-1863-2
  19. Ministry of Trade, Industry and Energy (2015) Nuclear power generation. Human culture arirang. 243-245p.
  20. Mohamed, W. T. (2006) Quantitative elemental analysis of seawater by laser induced breakdown spectroscopy. International Journal of Pure and Applied Physics, v.2, p.11-21.
  21. Nesterenko, E. P., Nesterenko, P. N., Melissa Melendez, B. P. and Corredor, J. E. (2012) Fast direct determination of strontium in seawater using high-performance chelation ion chromatography. Microchemical Journal v.111 p.8-15.
  22. Ng, K. C., Ayala, N. L., Simeonsson, J. B. and Winefordner, J. D. (1992) Laser-induced plasma atomic emission spectrometry in liquid aerosols. Elsevier Science Publishers, v.269, p.123-128.
  23. Niu, L., Cho, H. H., Song, K. S., Cha, H., Kim, Y. and Lee, Y. I. (2002) Direct Determination of Strontium in Marine Algae Samples by Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, v.56, p.1511-1514. https://doi.org/10.1366/00037020260377850
  24. Noll, R. (2006) Terms and notations for laser-induced breakdown spectroscopy. Analytical and Bioanalytical Chemistry, v.385, p.214-218. https://doi.org/10.1007/s00216-006-0389-2
  25. Popov, A. M., Drozdova, A. N., Zaytsev, S. M., Biryukova, D. I., Zorov, N. B. and Labutin, T. A. (2016) Rapid, direct, determination of strontium in natural waters by laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, v.31, p.1123. https://doi.org/10.1039/C5JA00468C
  26. Salmon, L., Menut, D., Lacour, J. L., Vors, E., L'Hermite, D., Gallou, C., B Sirven, J. B. and Mauchien, P. (2008) Atalante 2008: nuclear fuel cycle for a sustainable future, Montpellier, p.1-6.
  27. Sarkar, A., Aggarwal, S. K., Sasibhusan, K. and Alamelu. D. (2009) Determination of sub-ppm levels of boron in ground water samples by laser induced breakdown spectroscopy. Microchim Acta, v.168, p.65-69.
  28. Trevizan, L. C., Santos D., Samad, R. E., Vieira N. D., Nunes, L. C., Rufini, I. A. and Krug, F. J. (2009) Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials. Elsevier Science, v.64, p.369-377.
  29. Todorovic, N., Stojkovic, I., Nikolov, J. and Tenjovic, B. (2017) $^{90}Sr$ determination in water samples using Cerenkov radiation. Journal of Environmental Radioactivity, p.197-202.
  30. Tsukada, H., Takeda, A., Takahashi, T., Hasegawa, H., Hisamatsu, S. and Inaba, J. (2005) Uptake and distribution of Sr-90 and stable Sr in rice plants. Journal of Environmental Radioactivity, v.80, p.221-231.
  31. Uhrovcik, J. (2014) Strategy for determination of LOD and LOQ values - Some basic aspects. Elsevier Science Publishers, v.119. p.178-180.
  32. Vander Wal, R. L., Ticich, T. M., West, J. R., and Householder, R. A. (1999) Trace Metal Detection by Laser-Induced Breakdown Spectroscopy. Applied Spectroscopy, v.53, p.1226-1236. https://doi.org/10.1366/0003702991945461
  33. Vestin, F., Randelius, M. and Bengtson, A. (2010) Laserinduced breakdown spectroscopy applied on lowalloyed zinc samples. Spectrochimica Acta Part B, v.65, P.721-726. https://doi.org/10.1016/j.sab.2010.04.007
  34. Won, M. S., Cho, K. B., Yoon, J. H., Lee, D. W. and Shim, Y. B. (2001) Studies on the Separation and Concentration Method of $^{90}Sr$ in the Environmental Samples. Analytical Science & Technology, v.14, p.8-14.
  35. Yu, X. D., Li, Y., Gu, X., Bao, J., Yang, H. and Sun, L. (2014) Laser-induced breakdown spectroscopy application in environmental monitoring of water quality: a review. Environmental Monitoring Assessment, v.186, p.8969-8980. https://doi.org/10.1007/s10661-014-4058-1
  36. Zhao, F., Chen, Z., Zhang, F., Li, R. and Zhou, J. (2010) Ultra-sensitive detection of heavy metal ions in tap water by laser-induced breakdown spectroscopy with the assistance of electrical-deposition. Analytical Methods, v.2, p.408-414. https://doi.org/10.1039/b9ay00160c
  37. Zhu, D., Chen, J., Lu, J. and Ni, X. (2012) Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent. The Royal Society of Chemistry. v.4. p.819-823.
  38. Zhu, D., Wu, L., Wang, B., Chen, J., Lu, J. and Ni, X. (2011) Determination of Ca and Mg in aqueous solution by laser-induced breakdown spectroscopy using absorbent paper substrates. Applied Optics, v.50, p.29.