DOI QR코드

DOI QR Code

Property Changes of Anion Exchange Pore-filling Membranes According to Porous Substrates

지지체 종류에 따른 음이온 교환 함침막 특성 변화

  • Jeon, Sang Hwan (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Choi, Seon Hye (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Lee, Byeol-Nim (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Son, Tae Yang (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Moon, Sun Ju (Department of Energy Engineering, Hanyang University) ;
  • Park, Sang Hyun (Department of Energy Engineering, Hanyang University) ;
  • Kim, Ji Hoon (Department of Energy Engineering, Hanyang University) ;
  • Lee, Young Moo (Department of Energy Engineering, Hanyang University) ;
  • Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH))
  • 전상환 (경남과학기술대학교(GNTECH) 에너지공학과) ;
  • 최선혜 (경남과학기술대학교(GNTECH) 에너지공학과) ;
  • 이별님 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 손태양 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 문선주 (한양대학교 에너지공학과) ;
  • 박상현 (한양대학교 에너지공학과) ;
  • 김지훈 (한양대학교 에너지공학과) ;
  • 이영무 (한양대학교 에너지공학과) ;
  • 박치훈 (경남과학기술대학교(GNTECH) 에너지공학과)
  • Received : 2017.08.24
  • Accepted : 2017.08.29
  • Published : 2017.08.31

Abstract

Alkaline fuel cells using polymer electrolyte membranes are expected to replace proton exchange membrane fuel cells, which have similar system configurations. In particular, in alkaline fuel cells, a low-cost non-platinium catalyst can be used. In this study, to fabricate high performance and high durability anion exchange membranes for alkaline fuel cell systems, two kinds of supports, polybenzoxazole and polyethylene supports, were impregnated with Fumion FAA ionomer, by which we tried to fabricate the support-impregnated membrane which has higher mechanical strength and higher ion conductivity than the Fumion series. Finally, the Pore-filling membranes were successfully fabricated and ionic conductivity and mechanical properties were different depending on the properties of the supports. In the pore-filling membranes with Fumion ionomer on the PE support, excellent mechanical properties were obtained, but ionic conductivity decreased. On the other hand, when the PBO support was impregnated with Fumion ionomer, high ionic conductivity was shown after impregnation due to high basicity of PBO, but the mechanical strength was relatively low as compared with Fumion-PE membrane. As a result, it was concluded that it is necessary to consider the characteristics of the support according to the operating conditions of the alkaline fuel cell during the preparation of the pore-filling membranes.

전해질막을 사용하는 알칼라인 연료전지는 최근 들어서 시스템 구성이 비슷하고 전해질막의 종류만 다른 기존의 양이온 교환막 연료전지를 대체할 수 있을 것으로 기대를 모으고 있다. 특히, 알칼라인 연료전지에서는 비백금계 저가 촉매가 사용 가능하여 많은 연구들이 진행되고 있다. 본 연구에서는 이러한 알칼라인 연료전지 시스템에 적용하기 위한 고성능, 고내구성 음이온 교환막을 제조하기 위하여, 두 종류의 다공성 지지체인 폴리벤조옥사졸 지지체와 폴리에틸렌 지지체에 Fumion FAA 이오노머를 함침시켜, 기존의 Fumion 시리즈의 막보다 우수한 기계적 강도를 가지면서 높은 이온전도도를 유지할 수 있는 함침막을 제조하고자 하였다. 이를 통하여 최종적으로 지지체-함침막이 성공적으로 제조되었고, 이온 전도도와 기계적 특성이 지지체의 성질에 따라 서로 다른 결과를 보여 주었다. PE 지지체에 Fumion 이오노머를 함침시킨 함침막에서는 우수한 기계적 특성이 얻어졌지만, 이온전도도는 감소하였으며 특히 높은 온도에서 성능감소가 더욱 증가하였다. 반면에 PBO 지지체에 Fumion 이오노머를 함침 시킨 경우에는 PBO의 높은 염기성으로 인하여 함침 후에 높은 이온 전도도를 보였지만, Fumion-PE막에 비하여 상대적으로 낮은 기계적 특성을 나타내었다. 결과적으로 지지체-함침막 제조 시 알칼라인 연료전지의 운전조건에 따라 지지체의 특성을 충분히 고려하여 연구를 진행할 필요가 있다는 결론을 얻었다.

Keywords

References

  1. C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, and Y. M. Lee, "Nanocrack-regulated self-humidifying membranes", Nature, 532, 480 (2016). https://doi.org/10.1038/nature17634
  2. M. S. Whittingham and T. Zawodzinski, "Introduction: Batteries and fuel cells", Chem. Rev., 104, 4243 (2004). https://doi.org/10.1021/cr020705e
  3. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium- temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001
  4. M. Winter and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?", Chem. Rev., 104, 4245 (2004). https://doi.org/10.1021/cr020730k
  5. S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.171
  6. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above $100^{\circ}C$", Chem. Mater., 15, 4896 (2003). https://doi.org/10.1021/cm0310519
  7. S. Y. Lee, H.-J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cellsv", Membr. J., 26, 1 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.1
  8. K. A. Mauritz and R. B. Moore, "State of understanding of nafion", Chem. Rev., 104, 4535 (2004). https://doi.org/10.1021/cr0207123
  9. B. Bae, E. Kim, S. Lee, and H. Lee, "Research trends of anion exchange membranes within alkaline fuel cells", New. Renew. Ener., 11, 52 (2015). https://doi.org/10.7849/ksnre.2015.12.11.4.52
  10. H. Y. Lee, H. K. Hwang, S. S. Park, S. W. Choi, and Y. G. Shul, "Nafion impregnated electrospun polyethersulfone membrane for PEMFC", Membr. J., 20, 40 (2010).
  11. I. H. Kim, S. P. Kim, H. M. Lee, C. J. Park, J. W. Rhim, and S. I. Cheong, "Preparation and characterization of the impregnation to porous membranes with PVA/PSSA-MA/THS-PSA for fuel cell applications", Membr. J., 21, 299 (2011).
  12. C. S. Lee, H. S. Shin, J. H. Jun, S. Y. Jung, and J. W. Rhim, "Recent development trends of cation exchange membrane materials", Membr. J., 12, 1 (2002).
  13. J. Ahn and C. H. Lee, "Preparation and characterization of sulfonated poly(arylene ether sulfone) random copolymer reinforced membranes for fuel cells", Membr. J., 26, 146 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.146
  14. M. J. Lee, J. H. Kim, H.-S. Lim, S. Y. Lee, H. K. Yu, J. H. Kim, J. S. Lee, Y.-K. Sun, M. D. Guiver, K. D. Suh, and Y. M. Lee, "Highly lithium- ion conductive battery separators from thermally rearranged polybenzoxazole", Chem. Commun., 51, 2068 (2015). https://doi.org/10.1039/C4CC09411E
  15. Y. H. Park and S. Y. Nam, "Characterization of polyolefin separator support membranes with hydrophilic csoatings", Membr. J., 27, 92 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.92