DOI QR코드

DOI QR Code

Effect of Porcelain/Polymer Interface on the Microstructure, Insulation Characteristics and Electrical Field Distribution of Hybrid Insulators

자기재/폴리머 계면이 하이브리드 애자의 미세구조, 절연특성과 전계분포에 미치는 영향

  • Cho, Jun-Young (Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Woo-Seok (Department of Energy and Electrical Engineering, Korea Polytechnic University) ;
  • An, Ho-Sung (KEPCO Research Institute) ;
  • An, Hee-Sung (KEPCO Research Institute) ;
  • Kim, Tae-wan (KEPCO Research Institute) ;
  • Lim, Yun-Seog (KEPCO Research Institute) ;
  • Bae, Sung-Hwan (Department of Nano Science and Engineering, Kyungnam University) ;
  • Park, Chan (Department of Materials Science and Engineering, Seoul National University)
  • 조준영 (서울대학교 공과대학 재료공학부) ;
  • 김우석 (한국산업기술대학교 에너지전기공학과) ;
  • 안호성 (한국전력 전력연구원) ;
  • 안희성 (한국전력 전력연구원) ;
  • 김태완 (한국전력 전력연구원) ;
  • 임윤석 (한국전력 전력연구원) ;
  • 배성환 (경남대학교 나노신소재공학과) ;
  • 박찬 (서울대학교 공과대학 재료공학부)
  • Received : 2017.06.30
  • Accepted : 2017.07.25
  • Published : 2017.09.01

Abstract

Hybrid insulators that have the advantages of both porcelain (high mechanical strength and chemical stability) as well as polymer (light weight and high resistance to pollution) insulators, can be used in place of individual porcelain and polymer insulators that are used for both mechanical support as well as electrical insulation of overhead power transmission lines. The most significant feature of hybrid insulators is the presence of porcelain/polymer interfaces where the porcelain and polymer are physically bonded. Individual porcelain and polymer insulators do not have such porcelain/polymer interfaces. Although the interface is expected to affect the mechanical/electrical properties of the hybrid insulator, systematic studies of the adhesion properties at the porcelain/polymer interface and the effect of the interface on the insulation characteristics and electric field distribution of the hybrid insulator have not been reported. In this study, we fabricated small hybrid insulator specimens with various types of interfaces and investigated the effect of the porcelain/polymer interface on the microstructure, insulating characteristics, and electric field distribution of the hybrid insulators. It was observed that the porcelain/polymer interface of the hybrid insulator does not have a significant effect on the insulating characteristics and electric field distribution, and the hybrid insulator can exhibit electrical insulating properties that are similar or superior to those of individual porcelain and polymer insulators.

Keywords

References

  1. J. Looms, Insulators for High Voltages (Peter Pergrinus Ltd., London, 1988).
  2. H. M. Schneider, J. F. Hall, G. Karady, and J. Renowden, IEEE Trans. Power Del., 4, 2214 (1989). [DOI: http://dx.doi.org/10.1109/61.35649]
  3. J. Mackevich and M. Shah, IEEE Electr. Insul. Magazine, 13, 5 (1997). [DOI: http://dx.doi.org/10.1109/57.591510]
  4. J. F. Hall, IEEE Trans. Power Del., 8, 376 (1993). [DOI: http://dx.doi.org/10.1109/61.180359]
  5. S. C. Kim and T. Y. Kim, Proceedings of KIEE, 48, 22 (1999).
  6. J. H. Lee, B. S. Lee, J. B. Lee, and T. H. Kwon, Bulletin of the Korean Inst. Electr. Electron. Mater. Eng., 17, 14 (2004).
  7. X. Jiang, J. Yuan, L. Shu, Z. Zhang, J. Hu, and F. Mao, IEEE Trans. Power Del., 23, 1183 (2008) [DOI: http://dx.doi.org/10.1109/TPWRD.2007.908779]
  8. J.S.T. Looms, IEEE Electr. Insul. Magazine, 4, 11 (1988). [DOI: http://dx.doi.org/10.1109/57.7985]
  9. M. G. Mardika, T. A. Puri, Suwarno, M. Walch, U. Schichler, and G. Godel, Pro. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE) (IEEE, Chiang Mai, Thailand, 2015) p. 394. [DOI: http://dx.doi.org/10.1109/ICITEED.2015.7408978]
  10. G. Goedel, M. Muhr, J. M. George, and K. Pointner, Elektrotech. Inftech., 134, 53 (2017). [DOI: http://dx.doi.org/10.1007/s00502-016-0451-5]
  11. A. P. Mishra, R. S. Gorur, and S. Venkataraman, IEEE Trans. Dielectr. Electr. Insul., 15, 467 (2008). [DOI: http://dx.doi.org/10.1109/TDEI.2008.4483466]
  12. Y. Xiong, S. M. Rowland, J. Robertson, and R. J. Day, IEEE Trans. Dielectr. Electr. Insul., 15, 763 (2008). [DOI: http://dx.doi.org/10.1109/TDEI.2008.4543114]
  13. S. Chandrasekar, C. Kalaivanan, A. Cavallini, and G. C. Montanari, IEEE Trans. Dielectr. Electr. Insul., 16, 574 (2009). [DOI: http://dx.doi.org/10.1109/TDEI.2009.4815193]
  14. A. Rawat and R. S. Gorur, IEEE Trans. Dielectr. Electr. Insul., 16, 107 (2009). [DOI: http://dx.doi.org/10.1109/TDEI.2009.4784557]
  15. S. M. Rowland, J. Robertson, Y. Xiong, and R. J. Day, IEEE Trans. Dielectr. Electr. Insul., 17, 375 (2010). [DOI: http://dx.doi.org/10.1109/TDEI.2010.5448091]
  16. E. A. Cherney, A. C. Baker, J. Kuffel, Z. Lodi, A. Phillips, D. G. Powell, and G. A. Stewart, IEEE Trans. Power Del., 29, 275 (2014). [DOI: http://dx.doi.org/10.1109/TPWRD.2013.2288776]
  17. E. Cherney, A. Baker, B. Freimark, R. Gorur, Z. Lodi, M. Marzinotto, I. Ramirez-Vazquez, and G. Stewart, IEEE Trans. Power Del., 30, 1145 (2015). [DOI: http://dx.doi.org/10.1109/TPWRD.2014.2369457]
  18. Electrical Strength of Insulating Materials-Test Methods-Part 1: Test at Power Frequencies, IEC 60243-1, 53 (2013).