DOI QR코드

DOI QR Code

Morphological and Hemodynamic Parameters for Middle Cerebral Artery Bifurcation Aneurysm Rupture Risk Assessment

  • Qin, Hao (Department of Neurosurgery, Xuanwu Hospital, Capital Medical University) ;
  • Yang, Qixia (Department of Pharmacy, Zaozhuang Municipal Hospital) ;
  • Zhuang, Qiang (Department of Neurosurgery, Zaozhuang Municipal Hospital) ;
  • Long, Jianwu (Department of Neurosurgery, The 3rd Hospital of Xiamen) ;
  • Yang, Fan (Department of Neurosurgery, Xuanwu Hospital, Capital Medical University) ;
  • Zhang, Hongqi (Department of Neurosurgery, Xuanwu Hospital, Capital Medical University)
  • Received : 2017.01.20
  • Accepted : 2017.03.17
  • Published : 2017.09.01

Abstract

Objective : To investigate the morphological and hemodynamic parameters associated with middle cerebral artery (MCA) bifurcation aneurysm rupture. Methods : A retrospective study of 67 consecutive patients was carried out based on 3D digital subtraction angiography data. Morphological and hemodynamic parameters including aneurysm size parameters (dome width, height, and perpendicular height), longest dimension from the aneurysm neck to the dome tip, neck width, aneurysm area, aspect ratio, Longest dimension from the aneurysm neck to the dome tip (Dmax) to dome width, and height-width, Bottleneck factor, as well as wall shear stress (WSS), low WSS area (LSA), percentage of LSA (LSA%) and energy loss (EL) were estimated. Parameters between ruptured and un-ruptured groups were analyzed. Receiver operating characteristics were generated to check prediction performance of all significant variables. Results : Sixty-seven patients with MCA bifurcation aneurysm were included (31 unruptured, 36 ruptured). Dmax (p=0.008) was greater in ruptured group than that in un-ruptured group. D/W (p<0.001) and the percentage of the low WSS area ($0.09{\pm}0.13$ vs. $0.01{\pm}0.03$, p<0.001) were also greater in the ruptured group. Moreover, the EL in ruptured group was higher than that in unruptured group ($6.39{\pm}5.04$ vs. $1.53{\pm}0.86$, p<0.001). Multivariate regression analysis suggested D/W and EL were significant predictors of rupture of MCA bifurcation aneurysms. Correlation analyses revealed the D/W value was positively associated with the EL (R=0.442, p<0.01). Conclusion : D/W and EL might be the most two favorable factors to predict rupture risk of MCA bifurcation aneurysms.

Keywords

References

  1. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. : Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43 : 1711-1737, 2012 https://doi.org/10.1161/STR.0b013e3182587839
  2. Cross DT 3rd, Tirschwell DL, Clark MA, Tuden D, Derdeyn CP, Moran CJ, et al. : Mortality rates after subarachnoid hemorrhage: variations according to hospital case volume in 18 states. J Neurosurg 99 : 810-817, 2003 https://doi.org/10.3171/jns.2003.99.5.0810
  3. Darsaut TE, Estrade L, Jamali S, Bojanowski MW, Chagnon M, Raymond J : Uncertainty and agreement in the management of unruptured intracranial aneurysms. J Neurosurg 120 : 618-623, 2014 https://doi.org/10.3171/2013.11.JNS131366
  4. Dashti R, Hernesniemi J, Niemela M, Rinne J, Porras M, Lehecka M, et al. : Microneurosurgical management of middle cerebral artery bifurcation aneurysms. Surg Neurol 67 : 441-456, 2007 https://doi.org/10.1016/j.surneu.2006.11.056
  5. Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, et al. : Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63 : 185-196; discussion 196-197, 2008 https://doi.org/10.1227/01.NEU.0000316847.64140.81
  6. Duan G, Lv N, Yin J, Xu J, Hong B, Xu Y, et al. : Morphological and hemodynamic analysis of posterior communicating artery aneurysms prone to rupture: a matched case-control study. J Neurointerv Surg 8 : 47-51, 2016 https://doi.org/10.1136/neurintsurg-2014-011450
  7. Elsharkawy A, Lehecka M, Niemela M, Kivelev J, Billon-Grand R, Lehto H, et al. : Anatomic risk factors for middle cerebral artery aneurysm rupture: computed tomography angiography study of 1009 consecutive patients. Neurosurgery 73 : 825-837; discussion 836-837, 2013 https://doi.org/10.1227/NEU.0000000000000116
  8. Farnoush A, Avolio A, Qian Y : A growth model of saccular aneurysms based on hemodynamic and morphologic discriminant parameters for risk of rupture. J Clin Neurosci 21 : 1514-1519, 2014 https://doi.org/10.1016/j.jocn.2013.12.021
  9. Fan J, Wang Y, Liu J, Jing L, Wang C, Li C, et al. : Morphological-hemodynamic characteristics of intracranial bifurcation mirror aneurysms. World Neurosurg 84 : 114-120.e2, 2015 https://doi.org/10.1016/j.wneu.2015.02.038
  10. Hu P, Qian Y, Lee CJ, Zhang HQ, Ling F : The energy loss may predict rupture risks of anterior communicating aneurysms: a preliminary result. Int J Clin Exp Med 8 : 4128-4133, 2015
  11. Jing L, Zhong J, Liu J, Yang X, Paliwal N, Meng H, et al. : Hemodynamic effect of flow diverter and coils in treatment of large and giant intracranial aneurysms. World Neurosurg 89 : 199-207, 2016 https://doi.org/10.1016/j.wneu.2016.01.079
  12. Lall RR, Eddleman CS, Bendok BR, Batjer HH : Unruptured intracranial aneurysms and the assessment of rupture risk based on anatomical and morphological factors: sifting through the sands of data. Neurosurg Focus 26 : E2, 2009
  13. Lauric A, Baharoglu MI, Malek AM : Ruptured status discrimination performance of aspect ratio, height/width, and bottleneck factor is highly dependent on aneurysm sizing methodology. Neurosurgery 71 : 38-45, 2012 https://doi.org/10.1227/NEU.0b013e3182503bf9
  14. Long Y, Zhong J, Yu H, Yan H, Zhuo Z, Meng Q, et al. : A scaling aneurysm model-based approach to assessing the role of flow pattern and energy loss in aneurysm rupture prediction. J Transl Med 13 : 311, 2015 https://doi.org/10.1186/s12967-015-0673-z
  15. Lv N, Feng Z, Wang C, Cao W, Fang Y, Karmonik C, et al. : Morphological risk factors for rupture of small (<7 mm) posterior communicating artery aneurysms. World Neurosurg 87 : 311-315, 2016 https://doi.org/10.1016/j.wneu.2015.12.055
  16. Lv N, Wang C, Karmonik C, Fang Y, Xu J, Yu Y, et al. : Morphological and hemodynamic discriminators for rupture status in posterior communicating artery aneurysms. PLoS One 11 : e0149906, 2016 https://doi.org/10.1371/journal.pone.0149906
  17. Lv N, Yu Y, Xu J, Karmonik C, Liu J, Huang Q : Hemodynamic and morphological characteristics of unruptured posterior communicating artery aneurysms with oculomotor nerve palsy. J Neurosurg 125 : 264-268, 2016 https://doi.org/10.3171/2015.6.JNS15267
  18. Malek AM, Alper SL, Izumo S : Hemodynamic shear stress and its role in atherosclerosis. JAMA 282 : 2035-2042, 1999 https://doi.org/10.1001/jama.282.21.2035
  19. Maiti TK, Bir SC, Patra DP, Cuellar H, Nanda A : 158 morphological parameters for anterior communicating artery aneurysm rupture risk assessment. Neurosurgery 63 Suppl 1 : 163-164, 2016
  20. Meng H, Tutino VM, Xiang J, Siddiqui A : High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol 35 : 1254-1262, 2014 https://doi.org/10.3174/ajnr.A3558
  21. Miura Y, Ishida F, Umeda Y, Tanemura H, Suzuki H, Matsushima S, et al. : Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms. Stroke 44 : 519-521, 2013 https://doi.org/10.1161/STROKEAHA.112.675306
  22. Pereira VM, Brina O, Gonzalez AM, Narata AP, Ouared R, Karl-Olof L : Biology and hemodynamics of aneurismal vasculopathies. Eur J Radiol 82 : 1606-1617, 2013 https://doi.org/10.1016/j.ejrad.2012.12.012
  23. Qian Y, Takao H, Umezu M, Murayama Y : Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results. AJNR Am J Neuroradiol 32 : 1948-1955, 2011 https://doi.org/10.3174/ajnr.A2655
  24. Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, et al. : Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35 : 2500-2505, 2004 https://doi.org/10.1161/01.STR.0000144648.89172.0f
  25. Sugiyama S, Meng H, Funamoto K, Inoue T, Fujimura M, Nakayama T, et al. : Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery. World Neurosurg 78 : 462-468, 2012 https://doi.org/10.1016/j.wneu.2011.09.023
  26. Takao H, Murayama Y, Otsuka S, Qian Y, Mohamed A, Masuda S, et al. : Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke 43 : 1436-1439, 2012 https://doi.org/10.1161/STROKEAHA.111.640995
  27. Taylor CA, Hughes TJ, Zarins CK : Finite element modeling of threedimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng 26 : 975-987, 1998 https://doi.org/10.1114/1.140
  28. Ujiie H, Tachibana H, Hiramatsu O, Hazel AL, Matsumoto T, Ogasawara Y, et al. : Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45 : 119-129; discussion 129-130, 1999
  29. Ujiie H, Tamano Y, Sasaki K, Hori T : Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 48 : 495-502; discussion 502-503, 2001 https://doi.org/10.1097/00006123-200103000-00007
  30. Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, et al. : Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42 : 144-152, 2011 https://doi.org/10.1161/STROKEAHA.110.592923
  31. Xiang J, Yu J, Choi H, Dolan Fox JM, Snyder KV, Levy EI, et al. : Rupture Resemblance Score (RRS): toward risk stratification of unruptured intracranial aneurysms using hemodynamic-morphological discriminants. J Neurointerv Surg 7 : 490-495, 2015 https://doi.org/10.1136/neurintsurg-2014-011218
  32. Xiang J, Yu J, Snyder KV, Levy EI, Siddiqui AH, Meng H : Hemodynamicmorphological discriminant models for intracranial aneurysm rupture remain stable with increasing sample size. J Neurointerv Surg 8 : 104-110, 2016 https://doi.org/10.1136/neurintsurg-2014-011477
  33. Zhang Y, Jing L, Liu J, Li C, Fan J, Wang S, et al. : Clinical, morphological, and hemodynamic independent characteristic factors for rupture of posterior communicating artery aneurysms. J Neurointerv Surg 8 : 808-812, 2016 https://doi.org/10.1136/neurintsurg-2015-011865
  34. Zhang Y, Mu S, Chen J, Wang S, Li H, Yu H, et al. : Hemodynamic analysis of intracranial aneurysms with daughter blebs. Eur Neurol 66 : 359-367, 2011 https://doi.org/10.1159/000332814

Cited by

  1. COMPUTATIONAL STUDY ON THE RUPTURE RISK IN REAL CEREBRAL ANEURYSMS WITH GEOMETRICAL AND FLUID-MECHANICAL PARAMETERS USING FSI SIMULATIONS AND MACHINE LEARNING ALGORITHMS vol.19, pp.3, 2017, https://doi.org/10.1142/s0219519419500143
  2. Determining Significant Morphological and Hemodynamic Parameters to Assess the Rupture Risk of Cerebral Aneurysms vol.39, pp.3, 2017, https://doi.org/10.1007/s40846-018-0403-0
  3. Morphological Variables Associated With Ruptured Middle Cerebral Artery Aneurysms vol.85, pp.1, 2017, https://doi.org/10.1093/neuros/nyy213
  4. High wall shear stress beyond a certain range in the parent artery could predict the risk of anterior communicating artery aneurysm rupture at follow-up vol.131, pp.3, 2019, https://doi.org/10.3171/2018.4.jns173179
  5. High wall shear stress beyond a certain range in the parent artery could predict the risk of anterior communicating artery aneurysm rupture at follow-up vol.131, pp.3, 2019, https://doi.org/10.3171/2018.4.jns173179
  6. Morphological predictors of middle cerebral artery bifurcation aneurysm rupture vol.192, pp.None, 2017, https://doi.org/10.1016/j.clineuro.2020.105708
  7. Morphology parameters for rupture in middle cerebral artery mirror aneurysms vol.12, pp.9, 2017, https://doi.org/10.1136/neurintsurg-2019-015620
  8. The Hemodynamic Effect of Flow Diverter Treatment of Intracranial Bifurcation Aneurysms vol.40, pp.6, 2017, https://doi.org/10.1007/s40846-020-00570-3
  9. Age and morphology of posterior communicating artery aneurysms vol.10, pp.None, 2017, https://doi.org/10.1038/s41598-020-68276-9
  10. Risk Factors for Pericallosal Artery Aneurysm Rupture Based on Morphological Computer-Assisted Semiautomated Measurement and Hemodynamic Analysis vol.15, pp.None, 2017, https://doi.org/10.3389/fnins.2021.759806
  11. Cerebral aneurysm rupture status classification using statistical and machine learning methods vol.235, pp.6, 2017, https://doi.org/10.1177/09544119211000477
  12. Morphological variables associated with ruptured basilar tip aneurysms vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-81364-8