DOI QR코드

DOI QR Code

간섭 소음에 강인한 수동 소나 자동 토널 탐지 기법

Auto tonal detection method robust to interference for passive sonar

  • 투고 : 2017.04.10
  • 심사 : 2017.07.31
  • 발행 : 2017.07.31

초록

본 논문에서는 표적이 특정 탐지 빔 공간에 위치하는 동안 신호가 정상성을 유지하는 단기 정상성 개념을 활용한 자동 토널 탐지 기법을 제안 하였으며, 제안 기법의 연산량 감축 기법을 추가 제안하였다. 제안 기법은 신호의 정상성이 유지 되는 시간 동안 단일 빔 신호에서 추정된 문턱값과 입력신호의 기댓값을 비교함으로써 신호에 가변적이면서도 다수 표적에 의한 간섭 소음에 강인한 장점이 있다. 제안 기법의 성능 평가를 위하여 모사 신호 및 실제 해양 신호를 사용하였으며, 실험 결과 제안 기법이 기존 CFAR(Constant False Alarm Rate) 기법에 비하여 성능이 우수함을 확인하였다.

In this paper we propose an auto tonal detection method which exploits short term stationary when targets located in a detection beam area and then additional methods are proposed in order to reduce the computational complexity of the proposed method. The proposed method is adaptive to input signals and robust against interference caused by multiple targets because it compares an expected value of input signals with a threshold value which are estimated from a single beam while signals are keep stationary. The performances of the proposed methods are evaluated using by simulated data and acquired data from real ocean. The proposed method has shown better performance than conventional CFAR (Constant False Alarm Rate) methods.

키워드

참고문헌

  1. R. O. Nielsen, Sonar Signal Processing (Artech House, Norwood, 1990), pp. 100-122.
  2. B. Kalyan and A. Balasuriya, "Sonar based automatic target detection scheme for underwater environments using CFAR techniques: A comparative study" 2004 International Symposium on Underwater Technology, 33-37, 2004.
  3. P. Gandhi and S. Kassam, "Analysis of CFAR processor non-homogeneous backgrounds," IEEE Trans, Aerosp. Electron. Syst., 24, 427-445 (1988). https://doi.org/10.1109/7.7185
  4. S. Blake, "OS-CFAR theory for multiple targets and nonuniform clutter," IEEE Trans, Aerosp. Electron. Syst., 24, 785-790 (1998).
  5. A. B. Baggeroer and H. Cox, "Passive sonar limits upon nulling multiple moving ships with large aperture array," Proc. 33rd Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA. 1, 103-108 (1999).
  6. R. Bilato, O. Mak, and M. Brambilla, "An algorithm for fast Hilbert transform of real functions," Advanced in Computational Mathematics, 40, 1159-1168 (2014). https://doi.org/10.1007/s10444-014-9345-4