DOI QR코드

DOI QR Code

고주파수 초음파 영상을 위한 저잡음·광대역 수신 시스템 구현

Implementation of low-noise, wideband ultrasound receiver for high-frequency ultrasound imaging

  • 문주영 (서강대학교 바이오융합기술연구소) ;
  • 이준수 (서강대학교 전자공학과) ;
  • 장진호 (서강대학교 융합의생명공학과)
  • 투고 : 2017.04.06
  • 심사 : 2017.07.31
  • 발행 : 2017.07.31

초록

고주파수, 고해상도 초음파 영상을 획득하기 위해서는 고주파수 초음파 변환기가 가지는 작은 구경에 따른 낮은 민감도와 침투 깊이에 따른 높은 감쇠량을 극복하여야 한다. 이는 고주파수 초음파 변환기의 본질적인 한계점이므로 수신 시스템을 통하여 그 한계점을 극복하여야 한다. 본 논문은 고주파수, 고해상도 초음파 영상을 위하여 고주파수 초음파 변환기의 본질적인 한계인 낮은 민감도와 높은 감쇠량을 극복할 수 있는 저잡음 광대역 수신 시스템 개발과 특성 평가 결과에 관한 것이다. 개발한 저잡음 광대역 수신 시스템은 80 MHz 이상의 동작 주파수 대역에서 최대 73 dB의 증폭 이득과 48 dB의 가변 이득 범위를 만족하며 ${\pm}1dB$의 증폭 이득 평탄도 성능을 가진다. 또한 개발한 수신 시스템은 상용 리시버에 비하여 8.4 dB 이상의 신호대잡음비 성능과 3.7 dB 이상의 대조도 성능이 우수함을 확인하였다.

High frequency ultrasound imaging typically suffers from low sensitivity due to the small aperture of high frequency transducers and shallow imaging depth due to the frequency-dependent attenuation of ultrasound. These limitations should be overcome to obtain high-frequency, high- resolution ultrasound images. One practical solution to the problems is a high-performance signal receiver capable of detecting a very small signal and amplifying the signal with minimal electronic noise addition. This paper reports a recently developed low-noise, wideband ultrasound receiver for high-frequency, high-resolution ultrasound imaging. The developed receiver has an amplification gain of up to 73 dB and a variable amplification gain range of 48 dB over an operating frequency of 80 MHz. Also, it has an amplification gain flatness of ${\pm}1dB$. Due to these high performances, the developed receiver has a signal-to-noise ratio of at least 8.4 dB and a contrast-to-noise ratio of at least 3.7 dB higher than commercial receivers.

키워드

참고문헌

  1. D. W. Auckland, C. D. Smith, and B. R. Varlow, "Application of ultrasound to the NDT of solid insulation," IEE Proceedings - Science, Measurement and Technology 141, 20-24 (1994). https://doi.org/10.1049/ip-smt:19949588
  2. D. Lee, N. Koizumi, K. Ota, S. Yoshizawa, A. Ito, Y. Kaneko, Y. Matsumoto, and M. Mitsuishi, "Ultrasoundbased visual servoing system for lithotripsy," in Int. Conf. on Intelligent Robots and Systems, 877-882 (2007).
  3. J. J. Bernstein, S. L. Finberg, K. Houston, L. C. Niles, H. D. Chen, L. E. Cross, K. K. Li, and K. Udayakumar, "Micromachined high frequency ferroelectric sonar transducers," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 960-969 (1997). https://doi.org/10.1109/58.655620
  4. H. Kim, J. Kang, and J. H. Chang, "Thermal therapeutic method for selective treatment of deep-lying tissue by combining laser and high-intensity focused ultrasound energy," Opt. Lett., 39, 2806-2809 (2014). https://doi.org/10.1364/OL.39.002806
  5. Q. Shi, T. Wang, and C. Lee, "MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices," Scientific Reports, 6, 1-10 (2016). https://doi.org/10.1038/s41598-016-0001-8
  6. H. Hewener, and S. Tretbar, "Very high frequency ultrasound beamformer for biomedical applications and non-destructive testing," in 2015 IEEE International Ultrasonics Symposium, 1-4 (2015).
  7. R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, Inc., New York, 2007), pp. 510-517.
  8. T. L. Szabo, Diagnostic Ultrasound Imaging: Inside out (Elsevier Academic Press, Inc., Burlington, 2004), pp. 313-325.
  9. J. H. Cha, B. Kang, J. Jang, and J. H. Chang, "A 15-MHz 1-3 piezocomposite concave array transducer for ophthalmic imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 1994-2004 (2015). https://doi.org/10.1109/TUFFC.2015.007288
  10. G. Matthaei, L. Young and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (Artech House, Inc., Norwood, 1980), pp. 49-82.
  11. J. -Y. Moon, J. Lee, and J. H. Chang, "Electrical impedance matching networks based on filter structures for high frequency ultrasound transducers," Sensors and Actuators A: Physical 251, 225-233 (2016). https://doi.org/10.1016/j.sna.2016.10.025
  12. J. -Y. Moon, H. Kim, J. H. Song, J. Lee, and J. H. Chang, "Development of low-noise wideband receiver for intravascular ultrasound and photoacoustic imaging," in 2013 IEEE International Ultrasonics Symposium, 1575-1578 (2013).
  13. J. Kim, H. Kim, J. -Y. Moon, J. Lee, and J. H. Chang, "Image quality enhancement of intravascular ultrasound imaging using a complementary time-gain compensation" (in Korean), J. Acoust. Soc. Kr. Suppl.2(s) 33, 288-291(2014).
  14. J. Lee, J. H. Jang, and J. H. Chang, "Oblong-shaped-focused transducers for intravascular ultrasound imaging." IEEE Trans. Biomed. Eng., 64, 671-680 (2017).
  15. D. Y. Lee, Y. Yoo, T. K. Song, and J. H. Chang, "Adaptive dynamic quadrature demodulation with autoregressive spectral estimation in ultrasound imaging," Biomed. Signal Process. Control 7, 371-398(2012). https://doi.org/10.1016/j.bspc.2011.06.010