DOI QR코드

DOI QR Code

Effects of folic acid supplementation on serum homocysteine levels, lipid profiles, and vascular parameters in post-menopausal Korean women with type 2 diabetes mellitus

  • Vijayakumar, Aswathy (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Kim, Eun-kyung (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Kim, Hyesook (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Choi, Young Ju (Huh's Diabetes Clinics & 21C Diabetes and Vascular Research Institute) ;
  • Huh, Kap Bum (Huh's Diabetes Clinics & 21C Diabetes and Vascular Research Institute) ;
  • Chang, Namsoo (Department of Nutritional Science and Food Management, Ewha Womans University)
  • Received : 2017.03.10
  • Accepted : 2017.05.30
  • Published : 2017.08.01

Abstract

BACKGROUND/OBJECTIVES: Complications of diabetes, such as cardiovascular disease, are associated with increased mortality among type 2 diabetes mellitus patients. Homocysteine has been recently identified as a predictor of cardiovascular disease-related complications in diabetes. We investigated whether or not supplementation with folic acid tablets can lower homocysteine levels and improve parameters related with vascular complications. SUBJECTS/METHODS: We conducted a non-randomized 8-week trial involving postmenopausal diabetic women (n = 25) supplemented with $800{\mu}g$ of folic acid ($400{\mu}g$ twice a day) daily. Subjects' serum levels of folate, homocysteine, and vitamin $B_{12}$ were measured, along with vascular function and brachial-ankle pulse wave velocity. RESULTS: Folic acid supplementation significantly increased serum folate levels (P < 0.0001), reduced homocysteine levels (P < 0.0001), and increased vitamin $B_{12}$ levels (P = 0.0063). There were significant decreases in low-density lipoprotein cholesterol levels as well as the ratios of low-density lipoprotein cholesterol to high-density lipoprotein cholesterol and total cholesterol to high-density lipoprotein cholesterol. Brachial-ankle pulse wave velocities were not altered by supplementation. Changes in serum vitamin $B_{12}$ after folic acid supplementation were negatively correlated with changes in brachial-ankle pulse wave velocity. CONCLUSIONS: In this study on postmenopausal Korean women with type 2 diabetes mellitus, folic acid supplementation reduced serum homocysteine levels, increased serum folate and vitamin $B_{12}$ levels, and lowered lipid parameters.

Keywords

References

  1. Wei M, Gaskill SP, Haffner SM, Stern MP. Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality. The San Antonio Heart Study. Diabetes Care 1998; 21:1167-72. https://doi.org/10.2337/diacare.21.7.1167
  2. de Oliveira Alvim R, Santos PC, Musso MM, de Sa Cunha R, Krieger JE, Mill JG, Pereira AC. Impact of diabetes mellitus on arterial stiffness in a representative sample of an urban Brazilian population. Diabetol Metab Syndr 2013;5:45. https://doi.org/10.1186/1758-5996-5-45
  3. van de Ree MA, Huisman MV, de Man FH, van der Vijver JC, Meinders AE, Blauw GJ. Impaired endothelium-dependent vasodilation in type 2 diabetes mellitus and the lack of effect of simvastatin. Cardiovasc Res 2001; 52:299-305. https://doi.org/10.1016/S0008-6363(01)00379-0
  4. Levitzky YS, Pencina MJ, D'Agostino RB, Meigs JB, Murabito JM, Vasan RS, Fox CS. Impact of impaired fasting glucose on cardiovascular disease: the Framingham Heart Study. J Am Coll Cardiol 2008; 51:264-70. https://doi.org/10.1016/j.jacc.2007.09.038
  5. Elley CR, Kenealy T, Robinson E, Drury PL. Glycated haemoglobin and cardiovascular outcomes in people with Type 2 diabetes: a large prospective cohort study. Diabet Med 2008; 25:1295-301.
  6. Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR, Holman RR. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 1998; 316:823-8. https://doi.org/10.1136/bmj.316.7134.823
  7. Audelin MC, Genest J Jr. Homocysteine and cardiovascular disease in diabetes mellitus. Atherosclerosis 2001; 159:497-511. https://doi.org/10.1016/S0021-9150(01)00531-7
  8. Pfanzagl B, Tribl F, Koller E, Moslinger T. Homocysteine strongly enhances metal-catalyzed LDL oxidation in the presence of cystine and cysteine. Atherosclerosis 2003; 168:39-48. https://doi.org/10.1016/S0021-9150(03)00057-1
  9. Jin L, Caldwell RB, Li-Masters T, Caldwell RW. Homocysteine induces endothelial dysfunction via inhibition of arginine transport. J Physiol Pharmacol 2007; 58:191-206.
  10. Patterson S, Scullion SM, McCluskey JT, Flatt PR, McClenaghan NH. Prolonged exposure to homocysteine results in diminished but reversible pancreatic $\beta$-cell responsiveness to insulinotropic agents. Diabetes Metab Res Rev 2007; 23:324-34. https://doi.org/10.1002/dmrr.699
  11. Patterson S, Flatt PR, McClenaghan NH. Major metabolic homocysteine-derivative, homocysteine thiolactone, exerts changes in pancreatic beta-cell glucose-sensing, cellular signal transduction and integrity. Arch Biochem Biophys 2007; 461:287-93. https://doi.org/10.1016/j.abb.2007.02.011
  12. Wouters MG, Moorrees MT, van der Mooren MJ, Blom HJ, Boers GH, Schellekens LA, Thomas CM, Eskes TK. Plasma homocysteine and menopausal status. Eur J Clin Invest 1995; 25:801-5. https://doi.org/10.1111/j.1365-2362.1995.tb01687.x
  13. El-Kadi MA, Farag AF. The effect of folic acid supplementation on serum homocysteine of egyptian post menopausal women: a randomized controlled trial. Middle East Fertil Soc J 2014; 19:192-6. https://doi.org/10.1016/j.mefs.2013.10.004
  14. Qin X, Xu M, Zhang Y, Li J, Xu X, Wang X, Xu X, Huo Y. Effect of folic acid supplementation on the progression of carotid intima-media thickness: a meta-analysis of randomized controlled trials. Atherosclerosis 2012; 222:307-13. https://doi.org/10.1016/j.atherosclerosis.2011.12.007
  15. Chambers JC, Ueland PM, Obeid OA, Wrigley J, Refsum H, Kooner JS. Improved vascular endothelial function after oral B vitamins: an effect mediated through reduced concentrations of free plasma homocysteine. Circulation 2000; 102:2479-83. https://doi.org/10.1161/01.CIR.102.20.2479
  16. Paradisi G, Cucinelli F, Mele MC, Barini A, Lanzone A, Caruso A. Endothelial function in post-menopausal women: effect of folic acid supplementation. Hum Reprod 2004; 19:1031-5. https://doi.org/10.1093/humrep/deh189
  17. Villa P, Perri C, Suriano R, Cucinelli F, Panunzi S, Ranieri M, Mele C, Lanzone A. L-folic acid supplementation in healthy postmenopausal women: effect on homocysteine and glycolipid metabolism. J Clin Endocrinol Metab 2005; 90:4622-9. https://doi.org/10.1210/jc.2004-1954
  18. Sultan N, Khan MA, Malik S. Effect of folic acid supplementation on homocysteine level in postmenopausal women. J Ayub Med Coll Abbottabad 2007; 19:78-81.
  19. Mangoni AA, Sherwood RA, Asonganyi B, Swift CG, Thomas S, Jackson SH. Short-term oral folic acid supplementation enhances endothelial function in patients with type 2 diabetes. Am J Hypertens 2005;18:220-6. https://doi.org/10.1016/j.amjhyper.2004.08.036
  20. Albert CM, Cook NR, Gaziano JM, Zaharris E, MacFadyen J, Danielson E, Buring JE, Manson JE. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: a randomized trial. JAMA 2008; 299:2027-36. https://doi.org/10.1001/jama.299.17.2027
  21. Kim H, Park S, Yang H, Choi YJ, Huh KB, Chang N. Association between fish and shellfish, and omega-3 PUFAs intake and CVD risk factors in middle-aged female patients with type 2 diabetes. Nutr Res Pract 2015; 9:496-502. https://doi.org/10.4162/nrp.2015.9.5.496
  22. Organisation for Economic Co-operation and Development. Cardiovascular Disease and Diabetes: Policies for Better Health and Quality of Care. Paris: Organisation for Economic Co-operation and Development; 2015. p.111-31.
  23. Durga J, Bots ML, Schouten EG, Grobbee DE, Kok FJ, Verhoef P. Effect of 3 y of folic acid supplementation on the progression of carotid intima-media thickness and carotid arterial stiffness in older adults. Am J Clin Nutr 2011;93:941-9. https://doi.org/10.3945/ajcn.110.006429
  24. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18:499-502.
  25. Lauer M, Clarke R. Factors affecting the relationship between childhood and adult cholesterol levels: the Muscatine Study. Pediatrics 1988; 82:309-18.
  26. Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, Koji Y, Hori S, Yamamoto Y. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res 2002; 25:359-64. https://doi.org/10.1291/hypres.25.359
  27. Kweon SS, Shin MH, Park KS, Nam HS, Jeong SK, Ryu SY, Chung EK, Choi JS. Distribution of the ankle-brachial index and associated cardiovascular risk factors in a population of middle-aged and elderly koreans. J Korean Med Sci 2005; 20:373-8. https://doi.org/10.3346/jkms.2005.20.3.373
  28. Millan J, Pinto X, Munoz A, Zuniga M, Rubies-Prat J, Pallardo LF, Masana L, Mangas A, Hernandez-Mijares A, Gonzalez-Santos P, Ascaso JF, Pedro-Botet J. Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag 2009; 5:757-65.
  29. da Luz PL, Favarato D, Faria-Neto JR Jr, Lemos P, Chagas AC. High ratio of triglycerides to HDL-cholesterol predicts extensive coronary disease. Clinics (Sao Paulo) 2008; 63:427-32.
  30. Keser I, Ilich JZ, Vrkic N, Giljevic Z, Colic Baric I. Folic acid and vitamin B(12) supplementation lowers plasma homocysteine but has no effect on serum bone turnover markers in elderly women: a randomized, double-blind, placebo-controlled trial. Nutr Res 2013; 33:211-9. https://doi.org/10.1016/j.nutres.2013.01.002
  31. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, Fowkes FG, Hiatt WR, Jonsson B, Lacroix P, Marin B, McDermott MM, Norgren L, Pande RL, Preux PM, Stoffers HE, Treat-Jacobson D; American Heart Association Council on Peripheral Vascular Disease; Council on Epidemiology and Prevention; Council on Clinical Cardiology; Council on Cardiovascular Nursing; Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation 2012; 126:2890-909. https://doi.org/10.1161/CIR.0b013e318276fbcb
  32. Wu L, Wang Y, Zheng L, Li J, Hu D, Xu Y, Hasimu B, Yuan H, Yang J, Sun Y, Ma Y. Distribution of brachial-ankle pulse wave velocity values and optimal cut-off in distinguishing subjects with clinical condition in Chinese population. Int Angiol 2012; 31:252-9.
  33. Tehlivets O. Homocysteine as a risk factor for atherosclerosis: is its conversion to s-adenosyl-L-homocysteine the key to deregulated lipid metabolism? J Lipids 2011; 2011:702853.
  34. Young IS, Woodside JV. Folate and homocysteine. Curr Opin Clin Nutr Metab Care 2000; 3:427-32. https://doi.org/10.1097/00075197-200011000-00003
  35. Banerjee RV, Matthews RG. Cobalamin-dependent methionine synthase. FASEB J 1990; 4:1450-9. https://doi.org/10.1096/fasebj.4.5.2407589
  36. Bostom AG, Shemin D, Lapane KL, Nadeau MR, Sutherland P, Chan J, Rozen R, Yoburn D, Jacques PF, Selhub J, Rosenberg IH. Folate status is the major determinant of fasting total plasma homocysteine levels in maintenance dialysis patients. Atherosclerosis 1996; 123:193-202. https://doi.org/10.1016/0021-9150(96)05809-1
  37. Title LM, Ur E, Giddens K, Mcqueen MJ, Nassar BA. Folic acid improves endothelial dysfunction in type 2 diabetes--an effect independent of homocysteine-lowering. Vasc Med 2006; 11:101-9. https://doi.org/10.1191/1358863x06vm664oa
  38. Liao D, Tan H, Hui R, Li Z, Jiang X, Gaubatz J, Yang F, Durante W, Chan L, Schafer AI, Pownall HJ, Yang X, Wang H. Hyperhomocysteinemia decreases circulating high-density lipoprotein by inhibiting apolipoprotein A-I Protein synthesis and enhancing HDL cholesterol clearance. Circ Res 2006; 99:598-606. https://doi.org/10.1161/01.RES.0000242559.42077.22
  39. Namekata K, Enokido Y, Ishii I, Nagai Y, Harada T, Kimura H. Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. J Biol Chem 2004; 279:52961-9. https://doi.org/10.1074/jbc.M406820200
  40. Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR, Austin RC. Homocysteineinduced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 2001; 107:1263-73. https://doi.org/10.1172/JCI11596
  41. Adaikalakoteswari A, Jayashri R, Sukumar N, Venkataraman H, Pradeepa R, Gokulakrishnan K, Anjana RM, McTernan PG, Tripathi G, Patel V, Kumar S, Mohan V, Saravanan P. Vitamin B12 deficiency is associated with adverse lipid profile in Europeans and Indians with type 2 diabetes. Cardiovasc Diabetol 2014; 13:129. https://doi.org/10.1186/s12933-014-0129-4
  42. Shargorodsky M, Boaz M, Pasternak S, Hanah R, Matas Z, Fux A, Beigel Y, Mashavi M. Serum homocysteine, folate, vitamin B12 levels and arterial stiffness in diabetic patients: which of them is really important in atherogenesis? Diabetes Metab Res Rev 2009; 25:70-5. https://doi.org/10.1002/dmrr.902
  43. Nappo F, De Rosa N, Marfella R, De Lucia D, Ingrosso D, Perna AF, Farzati B, Giugliano D. Impairment of endothelial functions by acute hyperhomocysteinemia and reversal by antioxidant vitamins. JAMA 1999; 281:2113-8. https://doi.org/10.1001/jama.281.22.2113
  44. el-Swefy SE, Ali SI, Asker ME, Mohamed HE. Hyperhomocysteinaemia and cardiovascular risk in female ovariectomized rats: role of folic acid and hormone replacement therapy. J Pharm Pharmacol 2002; 54:391-7. https://doi.org/10.1211/0022357021778457
  45. Xia XS, Li X, Wang L, Wang JZ, Ma JP, Wu CJ. Supplementation of folic acid and vitamin B12 reduces plasma levels of asymmetric dimethylarginine in patients with acute ischemic stroke. J Clin Neurosci 2014; 21:1586-90. https://doi.org/10.1016/j.jocn.2013.11.043
  46. Sibal L, Agarwal SC, Home PD, Boger RH. The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev 2010; 6:82-90. https://doi.org/10.2174/157340310791162659
  47. Protopsaltis I, Foussas S, Angelidi A, Gritzapis A, Sergentanis T, Matsagos S, Tzirogiannis K, Panoutsopoulos GI, Dimitriadis G, Raptis S, Melidonis A. Impact of ADMA, endothelial progenitor cells and traditional cardiovascular risk factors on pulse wave velocity among prediabetic individuals. Cardiovasc Diabetol 2012; 11:141. https://doi.org/10.1186/1475-2840-11-141
  48. Koyama K, Ito A, Yamamoto J, Nishio T, Kajikuri J, Dohi Y, Ohte N, Sano A, Nakamura H, Kumagai H, Itoh T. Randomized controlled trial of the effect of short-term coadministration of methylcobalamin and folate on serum ADMA concentration in patients receiving long-term hemodialysis. Am J Kidney Dis 2010; 55:1069-78. https://doi.org/10.1053/j.ajkd.2009.12.035

Cited by

  1. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated meta-analysis vol.17, pp.1, 2018, https://doi.org/10.1186/s12944-018-0837-y
  2. HAEMATOLOGICAL PARAMETERS AND VITAMIN B12 LEVELS IN TYPE II DIABETIC PATIENTS ON METFORMIN- A PROSPECTIVE CASE CONTROL STUDY vol.5, pp.31, 2017, https://doi.org/10.18410/jebmh/2018/478
  3. The Effects of Folate Supplementation on Diabetes Biomarkers Among Patients with Metabolic Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials vol.50, pp.2, 2017, https://doi.org/10.1055/s-0043-125148
  4. The effects of folate supplementation on lipid profiles among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials vol.12, pp.3, 2018, https://doi.org/10.1016/j.dsx.2017.12.022
  5. Prediction model for the efficacy of folic acid therapy on hyperhomocysteinaemia based on genetic risk score methods vol.122, pp.1, 2017, https://doi.org/10.1017/s0007114519000783
  6. Hyperhomocysteinemia and Low Folate and Vitamin B12 Are Associated with Vascular Dysfunction and Impaired Nitric Oxide Sensitivity in Morbidly Obese Patients vol.12, pp.7, 2017, https://doi.org/10.3390/nu12072014