DOI QR코드

DOI QR Code

Characteristics of East Asian Cold Surges in the CMIP5 Climate Models

CMIP5 기후 모형에서 나타나는 동아시아 한파의 특징

  • Park, Tae-Won (Department of Earth Science Education, Chonnam National University) ;
  • Heo, Jin-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Jeong, Jee-Hoon (Department of Oceanography, Chonnam National University) ;
  • Ho, Chang-Hoi (School of Earth and Environmental Sciences, Seoul National University)
  • 박태원 (전남대학교 지구과학교육과) ;
  • 허진우 (서울대학교 지구환경과학부) ;
  • 정지훈 (전남대학교 해양학과) ;
  • 허창회 (서울대학교 지구환경과학부)
  • Received : 2017.03.10
  • Accepted : 2017.03.30
  • Published : 2017.06.30

Abstract

The cold surges over East Asia can be grouped to two types of the wave-train and the blocking. Recently, the observational study proposed new dynamical index to objectively identify cold surge types. In this study, the dynamical index is applied to the simulations of 10 climate models, which participate in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Focusing on assessment of cold surge simulation, we discuss characteristic of the wave-train and blocking cold surges in the climate models. The wave-train index (WI) and the blocking index (BI) based on potential temperature anomalies at dynamical tropopause over the subarctic region, the northeast China, and the western North Pacific enable us to classify cold surges in the climate models into two types. The climate models well simulate the occurrence mechanism of the wave-train cold surges with vertical structure related to growing baroclinic wave. However, while the wave-train in the observation propagates in west-east direction across the Eurasia Continent, most of the models simulate the southeastward propagation of the wave-train originated from the Kara Sea. For the blocking cold surges, the general features in the climate models well follow those in the observation to show the dipole pattern of a barotropic high-latitude blocking and a baroclinic coastal trough, leading to the Arctic cold surges with the strong northerly wind originated from the Arctic Sea. In both of the observation and climate models, the blocking cold surges tend to be more intense and last longer compared to the wave-train type.

Keywords

References

  1. Berrisford, P., and Coauthors, 2011: The ERA-Interim Archive Version 2.0. European Centre for Medium Range Weather Forecasts, 23 pp.
  2. Chen, T.-C., M.-C. Yen, W.-R. Huang, and W. A. Gallus Jr., 2002: An East Asian cold surge: Case study. Mon. Wea. Rev., 130, 2271-2290. https://doi.org/10.1175/1520-0493(2002)130<2271:AEACSC>2.0.CO;2
  3. Chen, T.-C., W.-R. Huang, and J. Yoon, 2004: Interannual variation of the east Asian cold surge activity. J. Climate, 17, 401-413. https://doi.org/10.1175/1520-0442(2004)017<0401:IVOTEA>2.0.CO;2
  4. Cohen, J., K. Saito, and D. Entekhabi, 2001: The role of the Siberian high in Northern Hemisphere climate variability. Geophys. Res. Lett., 28, 299-302. https://doi.org/10.1029/2000GL011927
  5. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.
  6. Flato, G., and Coauthors, 2013: Evaluation of climate models. In T. F. Stocker et al. Eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 741-866.
  7. Jeong, J.-H., and C.-H. Ho, 2005: Changes in occurrence of cold surges over east Asia in association with Arctic Oscillation. Geophys. Res. Lett., 32, doi:10.1029/2005GL023024.
  8. Jeong, J.-H., C.-H. Ho, B.-M. Kim, and W.-T. Kwon, 2005: Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in east Asia. J. Geophys. Res., 110, D11104, doi:10.1029/2004JD005408.
  9. Jeong, J.-H., B.-M. Kim, C.-H. Ho, D. Chen, and G.-H. Lim, 2006: Stratospheric origin of cold surge occurrence in East Asia. Geophys. Res. Lett., 33, L14710, doi: 10.1029/2006GL026607.
  10. Jeong, J.-H., T.-W. Park, J.-H. Choi, S.-W. Son, K. Song, J.-S. Kug, B.-M. Kim, H.-K. Kim, and S.-Y. Yim, 2016: Assessment of climate variability over East Asia-Korea for 2015/16 winter. Atmosphere, 26, 337-345, doi:10.14191/Atmos.2016.26.2.337 (in Korean with English abstract).
  11. Jiang, T. Y., and Y. Deng, 2011: Downstream modulation of North Pacific atmospheric river activity by East Asian cold surges. Geophys. Res. Lett., 38, doi:10.1029/2011GL049462.
  12. Joung, C. H., and M. H. Hitchman, 1982: On the role of successive downstream development in East Asian polar air outbreaks. Mon. Wea. Rev., 110, 1224-1237. https://doi.org/10.1175/1520-0493(1982)110<1224:OTROSD>2.0.CO;2
  13. Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759-762, doi:10.1038/ngeo2517.
  14. Lu, F. C., H. M. H. Juang, and C. C. Liao, 2007: A numerical case study of the passage of a cold surge across Taiwan. Meteorol. Atmos. Phys., 95, 27-52, doi:10.1007/s00703-006-0192-9.
  15. Park, T.-W., J.-H. Jeong, C.-H. Ho, and S.-J. Kim, 2008: Characteristics of atmospheric circulation associated with cold surge occurrences in East Asia: A case study during 2005/06 winter. Adv. Atmos. Sci., 25, 791-804, doi:10.1007/s00376-008-0791-0.
  16. Park, T.-W., C.-H. Ho, S.-J. Jeong, Y.-S. Choi, S.-K. Park, and C.-K. Song, 2011a: Different characteristics of cold day and cold surge frequency over East Asia in a global warming situation. J. Geophys. Res., 116, doi:10.1029/2010JD015369.
  17. Park, T.-W., C.-H. Ho, and S. Yang, 2011b: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 68-83, doi:10.1175/2010JCLI3529.1.
  18. Park, T.-W., C.-H. Ho, and Y. Deng, 2014: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Climate Dyn., 43, 753-770, doi:10.1007/s00382-013-1817-6.
  19. Park, T.-W., C.-H. Ho, J.-H. Jeong, J.-W. Heo, and Y. Deng, 2015: A new dynamical index for classification of cold surge types over East Asia. Climate Dyn., 45, 2469-2484, doi:10.1007/s00382-015-2483-7.
  20. Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743-755. https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2
  21. Takaya, K., and H. Nakamura, 2005a: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 4423-4440. https://doi.org/10.1175/JAS3629.1
  22. Takaya, K., and H. Nakamura, 2005b: Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian high. J. Atmos. Sci., 62, 4441-4449. https://doi.org/10.1175/JAS3628.1
  23. Zhang, Y., and W. C. Wang, 1997: Model-simulated northern winter cyclone and anticyclone activity under a greenhouse warming scenario. J. Climate, 10, 1616-1634. https://doi.org/10.1175/1520-0442(1997)010<1616:MSNWCA>2.0.CO;2
  24. Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997a: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979-95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 2605-2619. https://doi.org/10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2
  25. Zhang, Y., and Coauthors, 1997b: East Asian winter monsoon: Results from eight AMIP models. Climate Dyn., 13, 797-820. https://doi.org/10.1007/s003820050198

Cited by

  1. Changes in Cold Surge Occurrence over East Asia in the Future: Role of Thermal Structure vol.9, pp.6, 2018, https://doi.org/10.3390/atmos9060222