DOI QR코드

DOI QR Code

Evaluation of the East Asian Summer Monsoon Season Simulated in CMIP5 Models and the Future Change

CMIP5 모델에 나타난 동아시아 여름몬순의 모의 성능평가와 미래변화

  • 권상훈 (국립기상과학원 기후연구과) ;
  • 부경온 (국립기상과학원 기후연구과) ;
  • 심성보 (국립기상과학원 기후연구과) ;
  • 변영화 (국립기상과학원 기후연구과)
  • Received : 2016.12.16
  • Accepted : 2017.05.12
  • Published : 2017.06.30

Abstract

This study evaluates CMIP5 model performance on rainy season evolution in the East Asian summer monsoon. Historical (1986~2005) simulation is analyzed using ensemble mean of CMIP5 19 models. Simulated rainfall amount is underestimated than the observed and onset and termination of rainy season are earlier in the simulation. Compared with evolution timing, duration of the rainy season is uncertain with large model spread. This area-averaged analysis results mix relative differences among the models. All model show similarity in the underestimated rainfall, but there are quite large difference in dynamic and thermodynamic processes. The model difference is shown in horizontal distribution analysis. BEST and WORST group is selected based on skill score. BEST shows better performance in northward movement of the rain band, summer monsoon domain. Especially, meridional gradient of equivalent potential temperature and low-level circulation for evolving frontal system is quite well captured in BEST. According to RCP8.5, CMIP5 projects earlier onset, delayed termination and longer duration of the rainy season with increasing rainfall amount at the end of 21st century. BEST and WORST shows similar projection for the rainy season evolution timing, meanwhile there are large discrepancy in thermodynamic structure. BEST and WORST in future projection are different in moisture flux, vertical structure of equivalent potential temperature and the subsequent unstable changes in the conditional instability.

Keywords

References

  1. Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046-1053. https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2
  2. Boo, K.-O., G. Martin, A. Sellar, C. Senior, and Y.-H. Byun, 2011: Evaluating the East Asian monsoon simulation in climate models. J. Geophys. Res., 116, D01109, doi:10.1029/2010JD014737.
  3. Bao, Q., 2012: Projected changes in Asian summer monsoon in RCP scenarios of CMIP5. Atmos. Ocean. Sci. Lett., 5, 43-48, doi:10.1080/16742834.2012.11446959.
  4. Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117-142, doi:10.1007/s00703-005-0125-z.
  5. Hong, S. Y., 2004: Comparison of heavy rainfall mechanisms in Korea and the central US. J. Meteor. Soc. Japan, 82, 1469-1479, doi:10.2151/jmsj.2004.1469.
  6. Kim, J.-Y., and K.-H. Min, 2013: Analysis of snowfall development mechanism over the Korean Peninsula due to polar low. J. Korean Earth Sci. Soc., 34, 645-661, doi:10.5467/JKESS.2013.34.7.645 (in Korean with English abstract).
  7. Kitoh, A., 2004: Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere ocean GCM. J. Climate, 17, 783-802, doi:10.1175/1520-0442(2004)017<0783:EOMUOE>2.0.CO;2.
  8. Kripalani, R. H., J.-H. Oh, and H. S. Chaudhari, 2007: Response of the East Asian summer monsoon to doubled atmospheric CO2: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol., 87, 1-28, doi:10.1007/s00704-006-0238-4.
  9. Kurz, M., 1994: The role of diagnostic tools in modern weather forecasting. Meteor. Appl., 1, 45-67.
  10. Kusunoki, S., and O. Arakawa, 2012: Change in the precipitation intensity of the East Asian summer monsoon projected by CMIP3 models. Climate Dyn., 38, 2055-2072, doi:10.1007/s00382-011-1234-7.
  11. Kusunoki, S., and O. Arakawa, 2015: Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J. Climate, 28, 5601-5621, doi:10.1175/JCLID-14-00585.1.
  12. Lee, D.-K., J.-C. Ha, and J. Kim, 2008: Application of the Sawyer-Eliassen equation to the interpretation of the synoptic-scale dynamics of a heavy rainfall case over East Asia. Asia-Pac. J. Atmos. Sci., 44, 49-68.
  13. Lee, J.-Y., and Coauthors, 2010: How are seasonal prediction skills related to models' performance on mean state and annual cycle? Climate Dyn., 35, 267-283, doi:10.1007/s00382-010-0857-4.
  14. Lee, J.-Y., B. Wang, Q. Ding, K.-J. Ha, J.-B. Ahn, A. Kumar, B. Stern, and O. Alves, 2011a: How predictable is the Northern Hemisphere summer upper-tropospheric circulation? Climate Dyn., 37, 1189-1203, doi:10.1007/s00382-010-0909-9.
  15. Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn., 42, 101-119, doi:10.1007/s00382-012-1564-0.
  16. Lee, J.-Y., B. Wang, K.-H. Seo, K.-J. Ha, A. Kitoh, and J. Liu, 2015: Effect of mountain uplift on global monsoon precipitation. Asia-Pac. J. Atmos. Sci., 51, 275-290, doi:10.1007/s13143-015-0077-2.
  17. Lee, S.-S., J.-Y. Lee, K.-J. Ha, B. Wang, and J. K. E. Schemm, 2011b: Deficiencies and possibilities for long-lead coupled climate prediction of the western North Pacific-East Asian summer monsoon. Climate Dyn., 36, 1173-1188, doi:10.1007/s00382-010-0832-0.
  18. Lu, R., Y. Li, and B. Dong, 2007: East Asian precipitation increase under the global warming. J. Korean Meteor. Soc., 43, 267-272.
  19. Min, S.-K., S. Legutke, A. Hense, U. Cubasch, W.-T. Kwon, J.-H. Oh, and U. Schlese, 2006: East Asian climate change in the 21st century as simulated by the coupled climate model ECHO-G under IPCC SRES scenarios. J. Meteor. Soc. Japan, 84, 1-26, doi:10.2151/jmsj.84.1.
  20. Ninomiya, K., and H. Muraki, 1986: Large-scale circulations over East Asia during Baiu period of 1979. J. Meteor. Soc. Japan, 64, 409-429. https://doi.org/10.2151/jmsj1965.64.3_409
  21. Seo, K.-H., J.-H. Son, and J.-Y. Lee, 2011: A new look at Changma. Atmosphere, 21, 109-121 (in Korean with English abstract).
  22. Seo, K.-H., and J. Ok, 2013a: Assessing future changes in the East Asian summer monsoon using CMIP3 models: Results from the best model ensemble. J. Climate, 26, 1807-1817, doi:10.1175/JCLI-D-12-00109.1.
  23. Seo, K.-H., J. Ok, J.-H. Son, and D.-H. Cha, 2013b: Assessing future changes in the East Asian summer monsoon using CMIP5 Coupled Models. J. Climate, 26, 7662-7675, doi:10.1175/JCLI-D-12-00694.1.
  24. Seo, K.-H., J.-H. Son, J.-Y. Lee, and H.-S. Park, 2015: Northern east asian monsoon precipitation revealed by airmass variability and its prediction. J. Climate, 28, 6221-6223, doi:10.1175/JCLI-D-14-00526.1.
  25. Seo, Y.-W., H. Kim, K.-S. Yun, J.-Y. Lee, K.-J. Ha, and J.-Y. Moon, 2014: Future change of extreme temperature climate indices over East Asia with uncertainties estimation in the CMIP5. Asia-Pac. J. Atmos. Sci., 50, 609-624, doi:10.1007/s13143-014-0050-5.
  26. Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711-2744, doi:10.1007/s00382-012-1607-6.
  27. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183-7192. https://doi.org/10.1029/2000JD900719
  28. Wang, B., and LinHo, 2002: Rainy season of the Asian-Pacific summer monsoon. J. Climate, 15, 386-398. https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2
  29. Zhang, Y., X. Kuang, W. Guo, and T. Zhou, 2006: Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophys. Res. Lett., 33, L11708, doi:10.1029/2006GL026 377.