DOI QR코드

DOI QR Code

Properties of Beta-Ga2O3 Film from the Furnace Oxidation of Freestanding GaN

FS-GaN을 열산화하여 제작된 Beta-Ga2O3 박막의 특성

  • Received : 2017.04.14
  • Accepted : 2017.05.12
  • Published : 2017.07.01

Abstract

In this paper, we discuss ${\beta}-Ga_2O_3$ thin films that have been grown on freestanding GaN (FS-GaN) using furnace oxidation. A GaN template was grown by horizontalhydride vapor phase epitaxy (HVPE), and FS-GaN was fabricated using the laser lift off (LLO) system. To obtain ${\beta}-Ga_2O_3$ thin film, FS-GaN was oxidized at $900{\sim}1,100^{\circ}C$. Surface and cross-section of prepared ${\beta}-Ga_2O_3$ thin films were observed by field emission scanning electron microscopy (FE-SEM). The single crystal FS-GaNs were changed to poly-crystal ${\beta}-Ga_2O_3$. The oxidized ${\beta}-Ga_2O_3$ thin film at $1,100^{\circ}C$ was peel off from FS-GaN. Next, oxidation of FS-GaNwas investigated for 0.5~12 hours with variation of the oxidation time. The thicknesses of ${\beta}-Ga_2O_3$ thin films were measured from 100 nm to 1,200 nm. Moreover, the 2-theta XRD result indicated that (-201), (-402), and (-603) peaks were confirmed. The intensity of peaks was increased with increased oxidation time. The ${\beta}-Ga_2O_3$ thin film was generated to oxidize FS-GaN.

Keywords

References

  1. K. Kachel, M. Korytov, D. Gogova, Z. Galazka, M. Albrecht, R. Zwierz, D. Siche, S. Golka, A. Kwasniewsi, M. Schmidssauer, and R. Fornari, Cryst. Eng. Comm., 14, 8536 (2012). [DOI: http://dx.doi.org/10.1039/C2CE25976A]
  2. D. Y. Guo, X. L. Zhao, Y. S. Zhi, W. Cui, Y. Q. Huang, Y. H. An, P. G. Li, Z. P. Wu, and W. H. Tang, Mater. Lett., 164, 364 (2016). [DOI: http://dx.doi.org/10.1016/J.MATLET.2015.11.001]
  3. L. X. Qian, Y. Wang, Z. H. Wu, T. Sheng, and X. Z. Liu, Vacuum, 39, 1 (2016). [DOI: http://dx.doi.org/10.1016/j.vacuum.2016.07.039]
  4. C. T. Lee, H. W. Chen, and H. Y. Lee, Appl. Phys. Lett., 82, 4304 (2003). [DOI: http://dx.doi.org/10.1063/1.1584520]
  5. R. Suzuki, S. Nakagomi, and Y. Kokussun, Appl. Phys. Lett., 98, 131114 (2011). [DOI: http://dx.doi.org/10.1063/1.3574911]
  6. D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, Opt. Mater. Express., 4, 1067 (2014). [DOI: http://dx.doi.org/10.1364/OME.4.001067]
  7. K. H. Choi and H. C. Kang, Mater. Lett., 123, 160 (2014). [DOI: https://doi.org/10.1016/j.matlet.2014.03.038]
  8. Y. Chen, H. Liang, X. Xia, R. Shen, Y. Liu, Y. Luo, and G. Du, Appl. Surf. Sci., 325, 258 (2015). [DOI: https://doi.org/10.1016/j.apsusc.2014.11.074]
  9. W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, IEEE Sens. J., 11, 999 (2011). [DOI: http://dx.doi.org/10.1109/JSEN.2010.2062176]
  10. M. Steffens, R. Vianden, and A. F. Pasquevich. Hyperfine Interact., 237, 117 (2016). [DOI: http://dx.doi.org/10.1007/S10751-016-1326-1]
  11. C. T. Lee, H. W. Chen, F. T. Hwang, and H. Y. Lee, J. Electron. Mater., 34, 282 (2005). [DOI: http://dx.doi.org/10.1007/S11664-005-0214-2]
  12. H. Kim, S. J. Park, and H. Hwang, J. Vac. Sci. Technol. B, 19, 579 (2001). [DOI: http://dx.doi.org/10.1116/ 1.1349733]
  13. O. Ambacher, M. S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. A. Fischer, A. Miehr, A. Bergmaier, and G. Dollinger, J. Vac. Sci. Technol. B, 14, 3532 (1996). [DOI: http://dx.doi.org/10.1116/1.588793]
  14. R. Rao, A. M. Rao, B. Xu, J. Dong, S. Sharma, and M. K. Sunkara, J. Appl. Phys., 98, 094312 (2005). [DOI: http://dx.doi.org/10.1063/1.2128044]
  15. J. Q. Ning, S. J. Xu, D. P. Yu, Y. Y. Shan and S. T. Lee, Appl. Phys. Lett., 91, 103117 (2007). [DOI: https://doi.org/10.1063/1.2780081]