DOI QR코드

DOI QR Code

ICARP: 기회적 에너지 하베스팅 무선 네트워크를 위한 간섭 기반 충전 인지 라우팅 프로토콜

ICARP: Interference-based Charging Aware Routing Protocol for Opportunistic Energy Harvesting Wireless Networks

  • 김현태 (군산대학교 컴퓨터정보통신공학부) ;
  • 나인호 (군산대학교 컴퓨터정보통신공학부)
  • Kim, Hyun-Tae (School of Computer, Information and Communication Engineering, Kunsan National University) ;
  • Ra, In-Ho (School of Computer, Information and Communication Engineering, Kunsan National University)
  • 투고 : 2017.01.24
  • 심사 : 2017.02.15
  • 발행 : 2017.02.25

초록

최근의 에너지 하베스팅(energy harvesting) 무선 네트워크에 대한 연구는 제한된 에너지 자원 문제를 해결하여 효율적으로 네트워크 수명을 연장할 수 있는 기법 개발에 집중되고 있다. 에너지 하베스팅을 통해 획득할 수 있는 에너지의 양과 효율을 향상시키기 위해서는 여러 가지 에너지 하베스팅 특성을 종합적으로 고려하여 에너지 획득과 데이터 전송을 병행하는 네트워크 구조를 설계하는 매우 중요하다. 본 논문에서는 수신측에서 간섭 정보와 충전 시간을 고려하여 네트워크 내의 에너지 하베스팅 용량을 최대화하면서 종단간 지연 시간을 최소화할 수 있는 간섭 기반의 충전 인지 라우팅 프로토콜(ICARP)을 제안한다. 이를 위해 기회적 에너지 하베스팅 무선 네트워크에서 종단간 지연시간을 최소화할 수 있도록 충전 시간을 패킷 전달의 지연 성분을 적용한 새로운 간섭 기반 충전 인지 라우팅 기준(routing metric)과 ICARP를 설계하였다. 본 논문에서 제시한 라우팅 기법을 통한 전달 지연시간의 단축은 패킷손실이나 재전송으로 인한 에너지 소비량을 줄이는 효과를 얻을 수 있다. 시뮬레이션을 이용한 성능평가를 통하여 제안된 기법이 기존의 라우팅 기법보다 패킷전달율과 종단간 지연시간 측면에서 성능이 향상됨을 보였다.

Recent researches on radio frequency energy harvesting networks(RF-EHNs) with limited energy resource like battery have been focusing on the development of a new scheme that can effectively extend the whole lifetime of a network to semipermanent. In order for considerable increase both in the amount of energy obtained from radio frequency energy harvesting and its charging effectiveness, it is very important to design a network that supports energy harvesting and data transfer simultaneously with the full consideration of various characteristics affecting the performance of a RF-EHN. In this paper, we proposes an interference-based charging aware routing protocol(ICARP) that utilizes interference information and charging time to maximize the amount of energy harvesting and to minimize the end-to-end delay from a source to the given destination node. To accomplish the research objectives, this paper gives a design of ICARP adopting new network metrics such as interference information and charging time to minimize end-to-end delay in energy harvesting wireless networks. The proposed method enables a RF-EHN to reduce the number of packet losses and retransmissions significantly for better energy consumption. Finally, simulation results show that the network performance in the aspects of packet transmission rate and end-to-end delay has enhanced with the comparison of existing routing protocols.

키워드

참고문헌

  1. H. J. Visser and R. J. M. Vullers, "RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements," Proceedings of IEEE, vol. 101, no. 6, pp. 1410-1412, Jun. 2013 https://doi.org/10.1109/JPROC.2013.2250891
  2. A. B. Altayeva and Y. I. Cho, "Comparison of Radio Wave Propagation Models for Mobile Networks," International Journal of Fuzzy Logic and Intelligent Systems, vol. 15, no. 3, pp. 192-199, Sept. 2015 https://doi.org/10.5391/IJFIS.2015.15.3.192
  3. H. Nishimoto, Y. Kawahara, and T. Asami, "Prototype Implementation of Ambient RF Energy Harvesting Wireless Sensor Networks," Proceedings of. IEEE Sensors, Nov. 2010
  4. R. Doost, K. R. Chowdhury, and D. Di Felice, "Routing and Link Layer Protocol Design for sensor Networks with Wireless Energy Transfer," Proceedings of IEEE INFOCOM-Mini Conference, pp. 150-154, Apr. 2013
  5. G. Gupta and P. R. Kumar, "The Capacity of Wireless Networks," IEEE Transactions on Information Theory, vol. 46, no. 2, 2000
  6. A. P. Subramanian, M. M. Buddhikot, S. Miller, "Interference Aware Routing in Multi-Radio Wireless Mesh Networks," Proceedings of the 2nd IEEE Workshop Wireless Mesh Networks, Sept. 2006
  7. S. Sarkar, M.H.R. Khouzani, and K. Kar, "Optimal Routing and Scheduling in Multihop Wireless Renewable Energy Networks," IEEE Transactions on Automatic Control, vol. 58, no. 7, pp. 1792-1798, July 2013 https://doi.org/10.1109/TAC.2013.2250074
  8. A. A. Nasir, X. Zhou, S. Durrani, R. A. Kennedy, "Relaying Protocol for Wireless Energy harvesting and Information Processing," IEEE Transactions on Wireless Communications, vol. 12, no. 7, pp. 3622-3636, July 2013. https://doi.org/10.1109/TWC.2013.062413.122042
  9. N. Zhao, F. R. Yu, and V. C. M. Leung, "Wireless Energy Harvesting in Interference Alignment Networks," IEEE Communications Magazine, pp. 72-78, June 2015
  10. H. Chen, Y. Li, Y. Jiang, Y. Ma, and B. Vuetic, "Distributed Power Splitting for SWIPT in Relay Interference Channels using Game Theory," IEEE Transactions on Wireless Communications, vol. 14, pp. 410-420, Jan. 2015 https://doi.org/10.1109/TWC.2014.2349892
  11. I. Krikidis, "Simultaneous Information and Energy Transfer in Large-Scale Networks with/ without Relaying," IEEE Transactions on Communications, vol. 2, no. 3, pp. 900-912, Mar. 2014
  12. "The ns-3 network simulator," Available: http://www.nsnam.org/