References
- Airs, P.M., Bartholomay, L.C., 2017. RNA interference for mosquito and mosquito-borne disease control. Insects 8, 4. https://doi.org/10.3390/insects8010004
- Araujo, R.N., Santos, A., Pinto, F.S., Gontijo, N.F., Lehane, M.J., Pereira, M.H., 2006. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem. Mol. Biol. 36, 683-693. https://doi.org/10.1016/j.ibmb.2006.05.012
- Attasart, P., Namramoon, O., Kongphom, U., Chimwai, C., Panyim, S., 2013. Ingestion of bacteria expressing dsRNA triggers specific RNA silencing in shrimp. Virus Res. 171, 252-256. https://doi.org/10.1016/j.virusres.2012.11.012
- Bass, C., Denholm, I., Williamson, M.S., Nauen, R., 2015. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Physiol. 121, 78-87. https://doi.org/10.1016/j.pestbp.2015.04.004
- Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T.., Roberts, J., 2007. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25, 1322-1326. https://doi.org/10.1038/nbt1359
- Behura, S.K., 2007. Insect microRNAs: structure, function and evolution. Insect Biochem. Mol. Biol. 37, 3-9. https://doi.org/10.1016/j.ibmb.2006.10.006
- Boisson, B., Jacques, J.C., Choumet, V., Martin, E., Xu, J.N., Vernick, K., Bourgouin, C., 2006. Gene silencing in mosquito salivary glands by RNAi. FEBS Lett. 580, 1988-1992. https://doi.org/10.1016/j.febslet.2006.02.069
- Bologna, N.G., Voinnet, O., 2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 65, 473-503. https://doi.org/10.1146/annurev-arplant-050213-035728
- Bucher, G., Scholten, J., Klingler, M., 2002. Parental RNAi in Tribolium (Coleoptera). Curr. Biol. 12, R85-R86. https://doi.org/10.1016/S0960-9822(02)00666-8
- Chikate, Y.R., Dawkar, V.V., Barbole, R.S., Tilak, P.V., Gupta, V.S., Giri, A.P., 2016. RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera. Pestic. Biochem. Physiol. 133, 44-51. https://doi.org/10.1016/j.pestbp.2016.03.006
- Dzitoyeva, S., Dimitrijevic, N., Manev, H., 2001. Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Mol. Psychiatry 6, 665-670. https://doi.org/10.1038/sj.mp.4000955
- Fire, A., Xu, S.Q., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. https://doi.org/10.1038/35888
- Fishilevich, E., Vélez, A.M., Khajuria, C., Frey, M.L., Hamm, R.L., Wang, H., Schulenberg, G.A., Bowling, A.J., Pence, H.E., Gandra, P., Arora, K., Storer, N.P., Narva, K.E., Siegfried, B.D., 2016. Use of chromatin remodeling ATPases as RNAi targets for parental control of western corn rootworm (Diabrotica virgifera virgifera) and Neotropical brown stink bug (Euschistus heros). Insect Biochem. Mol. Biol. 71, 58-71. https://doi.org/10.1016/j.ibmb.2016.02.004
- Ganbaatar, O., Cao, B., Zhang, Y., Bao, D., Bao, W., Wuriyanghan, H., 2017. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotechnol. 17, 9. https://doi.org/10.1186/s12896-017-0328-7
- Gong, L., Chen, Y., Hu, Z., Hu, M., 2013. Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions. PLoS One 8, e62990. https://doi.org/10.1371/journal.pone.0062990
- Gordon, K.H.J., Waterhouse, P.M., 2007. RNAi for insect-proof plants. Nat. Biotechnol. 25, 1231-1232. https://doi.org/10.1038/nbt1107-1231
- Griebler, M., Westerlund, S.A., Hoffmann, K.H., Meyering-Vos, M., 2008. RNA interference with the allatoregulating neuropeptide genes from the fall armyworm Spodoptera frugiperda and its effects on the JH titer in the hemolymph. J. Insect Physiol. 54, 997-1007. https://doi.org/10.1016/j.jinsphys.2008.04.019
- Guan, R., Li, H., Miao, X., 2017. RNAi pest control and enhanced Bt insecticidal efficiency achieved by dsRNA of chymotrypsinlike genes in Ostrinia furnacalis. J. Pest. Sci. 90, 745-757. https://doi.org/10.1007/s10340-016-0797-9
- Hakim, R.S., Baldwin, K., Smagghe, G., 2010. Regulation of midgut growth, development, and metamorphosis. Annu. Rev. Entomol. 55, 593-608. https://doi.org/10.1146/annurev-ento-112408-085450
- Huvenne, H., Smagghe, G., 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J. Insect Physiol. 56, 227-235. https://doi.org/10.1016/j.jinsphys.2009.10.004
- Jayachandran, B., Hussain, M., Asgari, S., 2013. An insect trypsinlike serine protease as a target of microRNA: utilization of microRNA mimics and inhibitors by oral feeding. Insect Biochem. Mol. Biol. 43, 398-406. https://doi.org/10.1016/j.ibmb.2012.10.004
- Jose, A.M., Smith, J.J., Hunter, C.P., 2009. Export of RNA silencing from C. elegans tissues does not require the RNA channel SID-1. Proc. Natl. Acad. Sci. USA 106, 2283-2288.
- Kamath, R.S., Ahringer, J., 2003. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313-321. https://doi.org/10.1016/S1046-2023(03)00050-1
- Kennerdell, J.R., Carthew, R.W., 1998. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017-1026. https://doi.org/10.1016/S0092-8674(00)81725-0
- Khajuria, C., Vélez, A.M., Rangasamy, M., Wang, H., Fishilevich, E., Frey, M.L., Carneiro, N.P., Gandra, P., Narva, K.E., Siegfried, B.D., 2015. Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Insect Biochem. Mol Biol. 63, 54-62. https://doi.org/10.1016/j.ibmb.2015.05.011
- Kim, Y., 2014. Development and application of novel biopesticides using insect immunosuppression, in Park, Y.M., Chun, I.J., Kim, Y., Lim, U.T., Lim, J.H. (Eds.), Horticultural crops: development and application of novel technologies. ANU Ag. Sci. Tech. Institute, Andong, pp. 41-112.
- Kim, E., Kim, Y., 2016. A freeze-drying formulation and target specificity of double-stranded RNA-expressing bacteria to control insect pests. Korean J. Appl. Entomol. 55, 81-89.
-
Kim, E., Park, Y., Kim, Y., 2015a. A transformed bacterium expressing double-stranded RNA specific to integrin
${\beta}1$ enhances Bt toxin efficacy against a polyphagous insect pest, Spodoptera exigua. PLoS One 10, e0132631. https://doi.org/10.1371/journal.pone.0132631 - Kim, Y., Kim, E., Park, Y., Kim, Y., 2015b. Construction of a transgenic tobacco expressing a polydnaviral cystatin. Korean J. Appl. Entomol. 54, 1-9. https://doi.org/10.5656/KSAE.2015.01.1.055
- Kim, Y.H., Issa, M.S., Cooper, A.M.W., Zhu, K.Y., 2015c. RNA interference: applications and advances in insect toxicology and insect pest management. Pesti. Biochem. Physiol. 120, 109-117. https://doi.org/10.1016/j.pestbp.2015.01.002
- Kim, H.S., Noh, S., Park, Y., 2017. Enhancement of Bacillus thuringiensis Cry1Ac and Cry1Ca toxicity against Spodoptera exigua (Hübner) by suppression of a chitin synthase B gene in midgut. J. Asia Pac. Entomol. 20, 199-205. https://doi.org/10.1016/j.aspen.2016.12.015
- Kühn, L.C., 2015. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics 7, 232-243 https://doi.org/10.1039/C4MT00164H
- Li, X., Zhang, M., Zhang, H., 2011. RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PLoS One 6, e17788. https://doi.org/10.1371/journal.pone.0017788
- Lim, Z.X., Robinson, K.E., Jain, R.G., Chandra, G.S., Asokan, R., Asgari, S., Mitter, N., 2016. Diet-delivered RNAi in Helicoverpa armigera - progresses and challenges. J. Insect Physiol. 85, 86-93. https://doi.org/10.1016/j.jinsphys.2015.11.005
- Ling, L., Ge, X., Li, Z., Zeng, B., Xu, J., Chen, X., Shang, P., James, A.A., Huang, Y., Tan, A., 2015. MiR-2 family targets awd and fng to regulate wing morphogenesis in Bombyx mori. RNA Biol. 12, 742-748. https://doi.org/10.1080/15476286.2015.1048957
- Mansoori, B., Sandoghchian Shotorbani, S., Baradaran, B., 2014. RNA interference and its role in cancer therapy. Adv. Pharm. Bull. 4, 313-321.
- Mao, Y.B., Cai, W.J., Wang, J.W., Hong, G.J., Tao, X.Y., Wang, L.J., Huang, Y.P., Chen, X.Y., 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25, 1307-1313. https://doi.org/10.1038/nbt1352
- Mao, Y.B., Tao, X.Y., Xue, X.Y., Wang, L.J., Chen, X.Y., 2011. Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res. 20, 665-673. https://doi.org/10.1007/s11248-010-9450-1
-
Mao, J., Zhang, P., Liu, C., Zeng, F., 2015. Co-silence of the coatomer
${\beta}$ and v-ATPase A genes by siRNA feeding reduces larval survival rate and weight gain of cotton bollworm, Helicoverpa armigera. Pestic. Biochem. Physiol. 118, 71-76. https://doi.org/10.1016/j.pestbp.2014.11.013 - Meyering-Vos, M., Muller, A. 2007. RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. J. Insect Physiol. 53, 840-848. https://doi.org/10.1016/j.jinsphys.2007.04.003
- Miller, S.C., Brown, S.J., Tomoyasu, Y., 2008. Larval RNAi in Drosophila? Dev. Genes Evol. 218, 505-510. https://doi.org/10.1007/s00427-008-0238-8
- Nauen, R., 2006. Insecticide mode of action: return of the ryanodine receptor. Pest Manage. Sci. 62, 690-692. https://doi.org/10.1002/ps.1254
- Pearson, A., Lux, A., Krieger, M., 1995. Expression cloning of DSR-CI, a class-C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92, 4056-4060.
- Price, D.R.G., Gatehouse, J.A., 2008. RNAi-mediated crop protection against insects. Trends Biotechnol. 26, 393-400. https://doi.org/10.1016/j.tibtech.2008.04.004
- Roignant, J.Y., Carre, C., Mugat, R., Szymczak, D., Lepesant, J.A., Antoniewski, C., 2003. Absence of transitive and systemic pathways allows cell-specific and isoform specific RNAi in Drosophila. RNA 9, 299-308. https://doi.org/10.1261/rna.2154103
- Runo, S., Alakonya, A., Machuka, J., Sinha, N., 2011. RNA interference as a resistance mechanism against crop parasites in Africa: a "Trojan horse' approach. Pest. Manag. Sci. 67, 129-136. https://doi.org/10.1002/ps.2052
- Saleh, M.C., van Rij, R.P., Hekele, A., Gillis, A., Foley, E., O'Farrell, P.H., Andino, R., 2006. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nature Cell Biol. 8, 793-802. https://doi.org/10.1038/ncb1439
- Saleh, M.C., Tassetto, M., van Rij, R.P., Goic, B., Gausson, V., Berry, B., Jacquier, C., Antoniewski, C., Andino, R., 2009. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458, 346-351. https://doi.org/10.1038/nature07712
- Scott, J.G., Michel, K., Bartholomay, L.C., Siegfried, B.D., Hunter, W.B., Smagghe, G., Zhu, K.Y., Douglas, A.E., 2013. Towards the elements of successful insect RNAi. J. Insect Physiol. 59, 1212-1221. https://doi.org/10.1016/j.jinsphys.2013.08.014
- Shakesby, A.J., Wallace, I.S., Isaacs, H.V., Pritchard, J., Roberts, D.M., Douglas, A.E., 2009. A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem. Mol. Biol. 39, 1-10. https://doi.org/10.1016/j.ibmb.2008.08.008
- Sivakumar, S., Rajagopal, R., Venkatesh, G.R., Srivastava, A., Bhatnagar, R.K., 2007. Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. J. Biol. Chem. 282, 7312-7319. https://doi.org/10.1074/jbc.M607442200
- Spit, J., Philips, A., Wynant, N., Santos, D., Plaetinck, G., Vanden Broeck, J., 2017. Knockdown of nuclease activity in the gut enhances RNAi efficiency in the Colorado potato beetle, Leptinotarsa decemlineata, but not in the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 81, 103-116. https://doi.org/10.1016/j.ibmb.2017.01.004
- Sugahara, R., Tanaka, S., Jouraku, A., Shiotsuki, T., 2017. Geographic variation in RNAi sensitivity in the migratory locust. Gene 605, 5-11. https://doi.org/10.1016/j.gene.2016.12.028
- Terenius, O., Papanicolaou, A., Garbutt, J.S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J.L., Barthel, A., Bebas, P., Bitra, K., Bravo, A., Chevalier, F., Collinge, D.P., Crava, C.M., de Maagd, R.A., Duvic, B., Erlandson, M., Faye, I., Felfoldi, G., Fujiwara, H., Futahashi, R., Gandhe, A.S., Gatehouse, H.S., Gatehouse, L.N., Giebultowicz, J.M., Gomez, I., Grimmelikhuijzen, C.J., Groot, A.T., Hauser, F., Heckel, D.G., Hegedus, D.D., Hrycaj, S., Huang, L., Hull, J.J., Iatrou, K., Iga, M., Kanost, M.R., Kotwica, J., Li, C., Li, J., Liu, J., Lundmark, M., Matsumoto, S., Meyering-Vos, M., Millichap, P.J., Monteiro, A., Mrinal, N., Niimi, T., Nowara, D., Ohnishi, A., Oostra, V., Ozaki, K., Papakonstantinou, M., Popadic, A., Rajam, M.V., Saenko, S., Simpson, R.M., Soberon, M., Strand, M.R., Tomita, S., Toprak, U., Wang, P., Wee, C.W., Whyard, S., Zhang, W., Nagaraju, J., Ffrench-Constant, R.H., Herrero, S., Gordon, K., Swevers, L., Smagghe, G., 2011. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 57, 231-245. https://doi.org/10.1016/j.jinsphys.2010.11.006
- Tian, H., Peng, H., Yao, Q., Chen, H., Xie, Q., Tang, B., Zhang, W., 2009. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4, e6225. https://doi.org/10.1371/journal.pone.0006225
- Timmons, L., Fire, A., 1998. Specific interference by ingested dsRNA. Nature 395, 854. https://doi.org/10.1038/27579
- Timmons, L., Court, D.L., Fire, A., 2001. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103-112. https://doi.org/10.1016/S0378-1119(00)00579-5
- Tomoyasu, Y., Denell, R.E., 2004. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev. Genes Evol. 214, 575-578. https://doi.org/10.1007/s00427-004-0434-0
- Tomoyasu, Y., Miller, S.C., Tomita, S., Schoppmeier, M., Grossmann, D., Bucher, G., 2008. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol. 9, R10. https://doi.org/10.1186/gb-2008-9-1-r10
- Ulvila, J., Parikka, M., Kleino, A., Sormunen, R., Ezekowitz, R.A., Kocks, C., Ramet, M., 2006. Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J. Biol. Chem. 281, 14370-14375. https://doi.org/10.1074/jbc.M513868200
- Velez, A.M., Khajuria, C., Wang, H., Narva, K.E., Siegfried, B.D., 2016. Knockdown of RNA interference pathway genes in Western corn rootworms (Diabrotica virgifera virgifera Le Conte) demonstrates a possible mechanism of resistance to lethal dsRNA. PLoS One 11, e0157520. https://doi.org/10.1371/journal.pone.0157520
- Volz, J., Muller, H.M., Zdanowicz, A., Kafatos, F.C., Osta, M.A., 2006. A genetic module regulates the melanization response of Anopheles to Plasmodium. Cell. Microbiol. 8, 1392-1405. https://doi.org/10.1111/j.1462-5822.2006.00718.x
- Whangbo, J.S., Hunter, C.P., 2008. Environmental RNA interference. Trends Genet. 24, 297-305. https://doi.org/10.1016/j.tig.2008.03.007
- Winston, W.M., Molodowitch, C., Hunter, C.P., 2002. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456-2459. https://doi.org/10.1126/science.1068836
- Winston, W.M., Sutherlin, M., Wright, A.J., Feinberg, E.H., Hunter, C.P., 2007. Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc. Natl. Acad. Sci. USA 104, 10565-10570.
- Wynant, N., Santos, D., Van Wielendaele, P., Vanden Broeck, J. 2014. Scavenger receptor-mediated endocytosis facilitates RNA interference in the desert locust, Schistocerca gregaria. Insect Mol. Biol. 23, 320-329.
- Xiao, D., Gao, X., Xu, J., Liang, X., Li, Q., Yao, J., Zhu, K.Y., 2015. Clathrin-dependent endocytosis plays a predominant role in cellular uptake of double-stranded RNA in the red flour beetle. Insect Biochem. Mol. Biol. 60, 68-77. https://doi.org/10.1016/j.ibmb.2015.03.009
- Xiong, Y., Zeng, H., Zhang, Y., Xu, D., Qiu, D., 2013. Silencing the HaHR3 gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. Intl. J. Biol. Sci. 9, 370-381. https://doi.org/10.7150/ijbs.5929
- Xu, J., Wang, X.F., Chen, P., Liu, F.T., Zheng, S.C., Ye, H., Mo, M.H., 2016. RNA interference in moths: mechanisms, applications, and progress. Genes 7, 88. https://doi.org/10.3390/genes7100088
- Yu, N., Christiaens, O., Liu, J., Niu, J., Cappelle, K., Caccia, S., Huvenne, H., Smagghe, G., 2013. Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci. 20, 4-14. https://doi.org/10.1111/j.1744-7917.2012.01534.x
- Zha, W., Peng, X., Chen, R., Du, B., Zhu, L., He, G., 2011. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6, e20504. https://doi.org/10.1371/journal.pone.0020504
- Zhang, X., Zhang, J., Zhu, K.Y., 2010. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol. Biol. 19, 683-693. https://doi.org/10.1111/j.1365-2583.2010.01029.x
- Zhang, H., Li, H.C., Miao, X.X., 2013. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Insect Sci. 20, 15-30. https://doi.org/10.1111/j.1744-7917.2012.01513.x
- Zhou, X., Wheeler, M.M., Oi, F.M., Scharf, M.E., 2008. RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem. Mol. Biol. 38, 805-815. https://doi.org/10.1016/j.ibmb.2008.05.005
- Zhu, F., Xu, J., Palli, R., Ferguson, J., Palli, S.R., 2011. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag. Sci. 67, 175-182. https://doi.org/10.1002/ps.2048
- Zhu, J.Q., Liu, S., Ma, Y., Zhang, J.Q., Qi, H.S., Wei, Z.J., Yao, Q, Zhang, WQ, Li, S., 2012. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insectassociated gene EcR. PLoS One 7, e38572. https://doi.org/10.1371/journal.pone.0038572