• Title/Summary/Keyword: Insect pest

Search Result 418, Processing Time 0.026 seconds

Hybridization and Use Of Grapes as an Oviposition Substrate Improves the Adaptation of Olive Fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) to Artificial Rearing Conditions

  • Sohel, Ahmad;Viwat, Wornoayporn;Polychronis, Rempoulakis;Emily A., Fontenot;Ul Haq, Ihsan;Carlos, Caceres;Hannes F., Paulus;Marc J.B., Vreysen
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.2
    • /
    • pp.198-206
    • /
    • 2014
  • The olive fly Bactrocera oleae (Rossi) is the key pest for olive cultivation worldwide. Substantial effort has been invested in the development of the sterile insect technique (SIT) to control this pest. One of the limitations to develop SIT technology for olive fruit fly is the low ability of wild females to lay eggs in other medium than olive fruits, and their slow adaptation to oviposition in artificial substrates. In the present study, fruit grapes were used as an alternative egg collection medium to harvest eggs and young larvae from freshly colonized wild strains originating from France, Italy, Spain and Croatia. The larvae were allowed to develop into the fruits until the second instar, before they were extracted out and further reared on a standard artificial diet. Furthermore, F1 to F4 female flies were alternatively offered wax bottles to oviposit. Finally, the performance of hybrid strains created from crosses between wild and long colonised flies was assessed. The results showed that females of all 4 wild strains readily oviposited eggs in grapes and from the F2 generation onward, females from all strains were adapted to laying eggs in wax bottles. No difference was observed in eggs and pupae production among all strains tested. The findings are discussed for their implications on SIT application against olive fruit fly.

Artificial rearing of the olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) for use in the Sterile Insect Technique: improvements of the egg collection system

  • Ahmad, Sohel;Haq, Ihsan ul;Rempoulakis, Polychronis;Orozco, Dina;Jessup, Andrew;Caceres, Carlos;Paulus, Hannes;Vreysen, Marc J.B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • One major constraint in the development and implementation of a successful and cost-effective area-wide integrated pest management (AW-IPM) programme with a SIT component for Bactrocera oleae (Diptera: Tephritidae) is the ability to produce a large number of high quality mass-reared individuals. The aim of this study was to develop a more efficient and practical egg collection system in an attempt to improve the mass-rearing of this species. The following basic parameters were examined: egg production per female, egg hatch, pupal recovery, pupal weight, adult emergence and percentage of fliers. Three different strains (Israel wild-type, France wild-type, and Greece laboratory) were tested and each strain was evaluated for six generations. Female flies of the Israel strain produced significantly more eggs per female than the other two strains, but egg hatch was significantly lower. Egg hatch of the France wild type and the Greece laboratory strain was similar. For all other parameters, there was no significant difference between strains; however, there was a significant generational effect for all parameters observed. As a result of this study, a protocol was developed for the mass-rearing of this species that included the use of large adult holding cages that could house up to 96,000 flies per cage. The newly developed method of egg collection using a flat wax panel as one of the sides of an adult holding cage proved to be cost-effective, efficient, making colony growth easier for industrial mass-rearing.

Comparison of Insect Pest Communities on 30 Cultivars of Hibiscus syriacus (나라꽃 무궁화 30품종에서 발생하는 해충상 비교)

  • Jung, Jong-Kook;Kim, Mannyeon;Lee, Cha Young;Jang, Beom-Jun;Kim, Dongsoo;Kwon, Hae Yeon;Park, Yunmi
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.116-127
    • /
    • 2021
  • In this study, insect pest communities and major insect pest species were investigated and compared among 30 cultivars of Hibiscus syriacus. Insects on H. syriacus were observed with the naked eye over 3 years (from 2018 to 2020) in Busan and Suwon. Except for Aphis gossypii (79,059 and 23,654 individuals in Busan and Suwon, respectively), 20 species (1,147 individuals) and 31 species (2,240 individuals) were found in Busan and Suwon, respectively. The number of insect pest species and individuals did not differ among H. syriacus cultivars, but there were differences according to study locations. The dominant insect pest species were A. gossypii, Rehimena surusalis, Rusicada privata, Halyomorpha halys, Haritalodes derogata, Dolycoris baccarum, and Plautia stali; the number of individuals in dominant species differed according to study location and year but not among H. syriacus cultivars. In summary, insect pest communities did not differ among 30 H. syriacus cultivars, but the matrix of surrounding environments where H. syriacus are planted may be more important.

Chemical ecology in Insect Pest Mangement

  • Guan, Zhi-He
    • Korean journal of applied entomology
    • /
    • v.31 no.3
    • /
    • pp.276-288
    • /
    • 1992
  • In this paper, the author gave a brief review on the meaning and background involving the growth of chemical ecology. Semichemicals which might be developed as insect control techniques incorporating in IPM program were described. The relevant semichemicals were grouped under separate topics including intraspecific semiochemicals, or pheromones (sex pheromones, alarm pheromones, and epidiectic pheromones), and interspecific semiochemicals, or allelochemics (allomones of Plant origin, and kairomones favoring natural enemies). Here, the author dealt with those of practical aspects only. The prospects of chemical ecology in insect pest management were also proposed.

  • PDF

An Analysis of Impacts of Climate Change on Rice Damage Occurrence by Insect Pests and Disease (기후변화가 벼 병해충 피해면적 발생에 미치는 영향분석)

  • Jeong, Hak-Kyun;Kim, Chang-Gil;Moon, Dong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.52-56
    • /
    • 2014
  • BACKGROUND: It is known that impacts of climate change on damage occurrence by insect pests and diseases are increasing. The negative effects of climate change on production will threaten our food security. It is needed that on the basis of analysis of the impacts, proper strategies in response to climate change are developed. METHODS AND RESULTS: The objective of this paper is to estimate impacts of climate change on rice damage occurrence by insect pests and diseases, using the panal model which analyzes both cross-section data and time series data. The result of an analysis on impacts of climate change on rice damage occurrence by pest insect and disease showed that the damage occurrence by Rice leaf roller and Rice water weevil increased if temperature increased, and damage occurrence by Stripe, Sheath blight, and Leaf Blast increased if precipitation(or amount of sunshine) increased(or decreased). CONCLUSION: Adaptation strategies, supplying weather forecasting information by region, developing systematical strategies for prevention of damage occurrence by pest insect and disease, analyzing the factors of damage occurrence by unexpected pest insect and disease, enforcing international cooperation for prevention of damage occurrence are needed to minimize the impacts of damage occurrence on rice production.

Current Status of Pheromone Research of Forest Insect Pests in Korea and Development Direction (국내 산림해충 페로몬 연구현황과 발전 방향)

  • Park, Il-Kwon
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.63-75
    • /
    • 2022
  • Semiochemicals including pheromone are chemicals used in chemical communication of insect. Semiochemicals have been widely used for population monitoring, mass trapping, and mating disruption of insect pest. In this review article, the current status of pheromone research of major forest insect pest in Korea such as Monochamus alternauts, M. saltuarius, Matsucoccus thunbergianae, Platypus koryoensis, Glyphodes perspectalis, Dioryctria abietella, Lymantria dispar, Synanthedon bicingulata, and Naxa seriaria was introduced, and the results were compared with those reported in other countries. Based on the analysis of current pheromone research of forest insect pests, future studies and development direction was suggested.

Damage Report on a Newly Recorded Coleopteran Pest, Aphanisticus congener (Coleoptera: Buprestidae) from Turfgrass in Korea

  • Kang, Byunghun;Kabir, Faisal Md.;Bae, Eun-Ji;Lee, Gwang Soo;Jeon, Byungduk;Lee, Dong Woon
    • Weed & Turfgrass Science
    • /
    • v.5 no.4
    • /
    • pp.274-279
    • /
    • 2016
  • Aphanisticus congener is a newly recorded buprestid (Coleoptera) insect pest of turfgrass in Korea. This buprestid pest was initially found from turfgrass conservation site in a greenhouse in Jinju, Gyeongnam province, Korea in July, 2014. The Aphanisticus in the family Buprestidae is a leaf miner. A. congener is the close species of A. aeneus which was firstly reported as sugarcane leaf sucker in India. A. congener was active from early July to late August in the greenhouse. Damage by the insect led to drying out and browning of turfgrass leaf because larva fed on cell sap of leaves and adult fed on leaf surface. A. congener damaged Zoysia japonica, Z. sinica, Conodon dactylon, and Poa pratensis when adults were artificially released into potted turfgrasses in the laboratory. In green house, A. congener damaged Z. japonica, Z. macrostachya, Z. matrella, Z. sinica, Conodon dactylon, and hybrid zoysiagrass. However, no damage symptoms were observed from the same turfgrass accessions in the nearby field of the greenhouse. Thus, the new coleopteran pest may be a warm-adapted pest for turfgrass, damaging turfgrass leaf only in warmer conditions.

Insect Pest Control Technique Using dsRNA (dsRNA를 이용한 해충방제 기술)

  • Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.56 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • Gene silencing using double-stranded RNA (dsRNA) has been widely used in functional genomics in biological organisms. Its principle stems from RNA interference (RNAi), a post-transcriptional control of gene expression. Suppression of specific gene expression using dsRNA may give significant lethal effect. Insect pest control exploits this molecular process to develop novel insecticides using specific dsRNAs. This review explains core principles of RNAi using dsRNA. Then it illustrates various examples to control insect pests using dsRNAs. It also discusses limitations to control insect pests using dsRNAs. Finally, it provides several breakthroughs to develop dsRNA insecticides.

An Integrated Approach in the Pest Management in Sericulture

  • Singh, R.N.;Saratchandra, Beera
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.2
    • /
    • pp.141-151
    • /
    • 2002
  • The success of sericulture industry in India is mainly attributed to the well-planned annual sericultural activity and the systematic implementation of pest preventive and control measures. The insect spectrum of silkworm and its food plants is complex and plays a major role in limiting the production of silk. Insects cause extensive damage to plant whereas predators and parasites either kill the silkworm larvae or force them to spin flimsy cocoons. Unilateral control measure against this pest is mainly based on the use of synthetic organic insecticides. Though these approaches initially paid rich dividends, the undesirable consequences soon surfaced. Insecticide induced resurgence of gall midges, leafhopper, leaf roller, secondary pest out breaks and development of pest biotypes has led to realization of Integrated Pest Management in sericulture. Various components of IPM, viz. Host plant resistance, cultural practices, biological control, chemical control and integrating them at various technological levels have been studied. Sources of host plant resistance have been identified for some of the major insect pests. High yielding mulberry variety has been propagated and their resistances towards major pests have been recorded. Cultural practices like pruning, pollarding, judicious use of nitrogen, optimum spacing and weed management have preyed to be the powerful tools in containing pests. Natural control over the pest population build- up exerted by the wide range of parasitoids, predators and pathogens has been well documented with identification of natural enemies and studies on their potential. Augmentation, through inoculation or inundative releases of parasitic arthropods, is the most direct way of increasing the numbers of these beneficials in sericulture.

Effects of Insect Screen Net on Insect Pest Control for Jujube (방충망에 의한 대추 해충 방제 효과)

  • Lee, Seong-Kyun;Lee, Kyeong-Hee;Oh, Ha-Kyung;Lee, Jong-Won;Kim, Chung-Woo;Kang, Hyo-Jung;Kim, Sang-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.619-630
    • /
    • 2017
  • In recent years, not only the cultivation area of Jujube in Korea but also the number of pest species has increased. The farmers farming environmentally friendly are in great difficulty because there are no effective control devices. This study was conducted to investigate the control effect of the insect screen net on three pest species (Apolygus spinolae, Dasineura sp. and Carposina sasakii) in Jujube orchard when the pests were blocked by insect screen net. For the first and second surveys, the damage rates by A. spinolae were 9.06, 13.95% in 50 mesh, 4.75, 10.17% in 25 mesh, 5.68, 11.84% in 18mesh mesh of insect screen net and 21.6, 36.34% in untreated insect screen net, respectively. The damage rates by Dasineura sp. were 0.54, 0.13% in 50 mesh, 0.93, 2.84% in 25 mesh, 1.05, 13.45% in 18 mesh mesh of insect screen net and 11.1, 26.65% in untreated insect screen net. Carposina sasakii were completely blocked in all the treatments. Damages on Jujube were not observed by insect screen net. Therefore, insect screen net is effective on insect pest control for Jujube.