DOI QR코드

DOI QR Code

Inhibitory Effect of Chlorine Dioxide Using Reactive Oxygen Species Against Heart Contraction of the Indianmeal Moth, Plodia interpunctella

이산화염소의 활성산소 발생에 따른 화랑곡나방 심장박동 억제 효과

  • Kim, Chul-young (Department of Plant Medicals, Andong National University) ;
  • Kwon, Hyeok (Department of Biosystems and Biotechnology, Korea University) ;
  • Kim, Wook (Department of Biosystems and Biotechnology, Korea University) ;
  • Kim, Yonggyun (Department of Plant Medicals, Andong National University)
  • 김철영 (안동대학교 식물의학과) ;
  • 권혁 (고려대학교 생명공학부) ;
  • 김욱 (고려대학교 생명공학부) ;
  • 김용균 (안동대학교 식물의학과)
  • Received : 2017.02.07
  • Accepted : 2017.04.15
  • Published : 2017.06.01

Abstract

Heart contraction is essential for insect hemolymph circulation, in which various physiological changes need control of the heart contraction. Thus, interruption of heartbeats intimidate insect survival. Chlorine dioxide induces release of reactive oxygen species (ROS), which has been regarded as the main insecticidal agent. This study analyzed the effect of chlorine dioxide on heartbeats of the Indianmeal moth, Plodia interpunctella. The larvae have the dorsal vessel on the medial dorsal region in a form of an extending tube from the first thorax to 10th abdominal segment. Dorsal vessel contraction was noticeable between 3rd and 10th abdominal segments, where five heart chambers were observed. Average heartbeat rate was 118.6 beats per min at $25^{\circ}C$. However, the heartbeats varied with ambient temperature. Injection of chlorine dioxide to hemocoel suppressed the heartbeats in a dose-dependent manner. The suppressive effect of chlorine dioxide also increased with exposure time to gas form of the chemical at 100 ppm. However, vitamin E (an antioxidant against ROS) treatment significantly rescued the larvae treated with chlorine dioxide in the heart contraction activity. These results suggest that chlorine dioxide negatively influences on the heart contraction of P. interpunctella via its production of ROS.

곤충의 혈액순환은 심장 박동에 의해 도움을 받는다. 다양한 생리적 변화는 심장 박동 조절을 수반하게 된다. 심장박동에 대한 교란은 곤충의 생존을 위협하게 된다. 본 연구는 활성산소를 유발하여 살충력을 발휘하는 이산화염소가 혈액순환계에 미치는 영향을 심장박동을 통해 분석하였다. 화랑곡나방(Plodia interpunctella) 유충의 등핏줄은 몸의 윗면 중앙에 위치하고 후방으로 복부 10번째 마디에서 시작하여 전방으로 첫 번째 가슴 마디까지 연결된 관 구조를 나타냈다. 등핏줄의 수축과 이완은 주로 복부 3-10번째 마디에 위치한 등핏줄에서 일어났으며 이 부위에 5개의 심실이 관찰되었다. 심장박동빈도는 $25^{\circ}C$에서 분당 평균 118.6회의 수축 리듬을 보였다. 그러나 온도에 따라 심장박동빈도는 현격한 변화를 보였다. 혈강에 이산화염소를 다양한 농도로 투여한 경우 심장박동빈도는 약제 농도 증가에 따라 감소하였다. 이산화염소(100 ppm)을 훈증 처리할 경우 노출 시간의 경과에 따라 심장박동리듬이 현격하게 감소하였다. 이러한 이산화염소의 심장박동 억제효과는 활성산소 저해제인 비타민 E와 함께 주입할 경우 회복되는 현상을 나타냈다. 이상의 결과는 이산화염소가 화랑곡나방의 심장박동에 억제효과를 주었으며 이러한 억제효과는 이물질이 유발하는 활성산소에 기인된 것으로 해석된다.

Keywords

References

  1. Brigelius-Flohé, R., Traber, M.G., 1999. Vitamin E: function and metabolism. FASEB J. 13, 1145-1155. https://doi.org/10.1096/fasebj.13.10.1145
  2. Chiang, R.G., Chiang, J.A., Davey, K.G., 1990. Morphology of the dorsal vessel in the abdomen of the blood-feeding insect Rhodnius prolixus. J. Morphol. 204, 9-23. https://doi.org/10.1002/jmor.1052040103
  3. Gibbs, S.G., Lowe, J.J., Smith, P.A., Hewlett, A.L., 2012. Gaseous chlorine dioxide as an alternative for bedbug control. Infect. Control Hosp. Epidemiol. 33, 495-499. https://doi.org/10.1086/665320
  4. Hamoudi, Z., Lange, A.B., Orchard, I., 2016. Identification and characterization of the corazonin receptor and possible physiological roles of the corazonin-signaling pathway in Rhodnius prolixus. Front. Neurosci. 10, 357.
  5. Hertel, W., Pass, G., 2002. An evolutionary treatment of the morphology and physiology of circulatory organs in insects. Comp. Biochem. Physiol. A 133, 555-575. https://doi.org/10.1016/S1095-6433(02)00251-9
  6. Kim, Y., Kumar, S., Rahman, M.M., Kwon, H., Chon, Y., Na, J., Kim, W., 2015a. Evasive behavior of the red flour beetle, Tribolium castaneum, against chlorine dioxide and its suppression by heat treatment. Korean J. Appl. Entomol. 554, 151-158.
  7. Kim, Y., Park, J., Kumar, S., Kwon, H., Na, J., Chun, Y., Kim, W., 2015b. Insecticidal activity of chlorine dioxide gas by inducing an oxidative stress to the red flour beetle, Tribolium castaneum. J. Stored Prod. Res. 64, 88-96. https://doi.org/10.1016/j.jspr.2015.09.001
  8. Kumar, S., Park, J., Kim, E., Na, J., Chun, Y.S., Kwon, H., Kim, W., Kim, Y., 2015. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia Interpunctella. Pesti. Biochem. Physiol. 124, 48-59. https://doi.org/10.1016/j.pestbp.2015.04.003
  9. Miller, T.A., 1974. Electrophysiology of the insect heart. In: Rockstein, M. (Ed.), Physiology of the Insecta, 2nd Edn. Vol. V, pp. 169-200. Academic Press, New York.
  10. Miller, T.A., 1997. Control of circulation in insects. Gen. Pharmacol. 29, 23-38. https://doi.org/10.1016/S0306-3623(96)00522-8
  11. Sanz, A., 2016. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan? Biochim. Biophys. Acta 1857, 1116-1126. https://doi.org/10.1016/j.bbabio.2016.03.018
  12. SAS Institute, Inc., 1989. SAS/STAT user's guide. SAS Institute, Inc., Cary, NC.
  13. Shim, J.K., Ha, D.M., Nho, S.K., Song, K.S., Lee, K.Y., 2008. Upregulation of heat shock protein genes by envenomation of ectoparasitoid Bracon hebetor in larval host of Indian meal moth Plodia interpunctella. J. Invertebr. Pathol. 97, 306-309. https://doi.org/10.1016/j.jip.2007.10.001
  14. Slama, K., Sakai, T., Taneda, M., 2006. Effect of corazonin and crustacean cardioactive peptide on heartbeat in the adult American cockroach (Periplaneta americana). Arch. Insect Biochem. Physiol. 62, 91-103. https://doi.org/10.1002/arch.20131
  15. Smits, A.W., Burggren, W.W., Oliveras, D., 2000. Developmental changes in in vivo cardiac performance in the moth Manduca sexta. J. Exp. Biol. 203, 369-378.
  16. Tartes, U., Vanatoa, A., Kuusik, A., 2002. The insect abdomen--a heartbeat manager in insects? Comp. Biochem. Physiol. A 133, 611-623. https://doi.org/10.1016/S1095-6433(02)00173-3
  17. Tublitz, N.J., Truman, J.W., 1983. Insect cardioactive peptides. II. Neurohormonal control of heart activity by two cardioacceleratory peptides in the tobacco hawkmoth, Manduca sexta. J. Exp. Biol. 114, 381-395.
  18. Young, R.O., 2016. Chlorine dioxide ($ClO_{2}$) as a non-toxic antimicrobial agent for virus, bacteria and yeast (Cadida albicans). Int. J. Vaccines Vaccin. 2, 00052.