DOI QR코드

DOI QR Code

A study on the mechanical performance of impregnated polymer foam in cargo leakage of LNG carrier

LNG운반선의 화물 누출 시 함침된 고분자 폼의 기계적 성능에 관한 연구

  • Park, Gi-Beom (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kim, Tae-Wook (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kim, Seul-Kee (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • Received : 2017.01.24
  • Accepted : 2017.04.06
  • Published : 2017.05.31

Abstract

In this study, the effect of cryogenic liquefied natural gas leakage and loading on liquefied natural gas cargo hold is investigated to observe the performance of the polymer foam material that comprises the cryogenic insulation of the cargo hold. The primary barriers of liquefied natural gas carrier that are in contact with the liquefied natural gas will leak if damage is accumulated, owing to fluid impact loads or liquefied natural gas loading / unloading over a long period. The leakage of the cryogenic fluid affects the interior of the polymer foam, which is a porous closed cell structure, and causes a change in behavior with respect to the working load. In this study, mechanical properties of polyisocyanurate foam specimen, which is a polymer material used as insulation, are evaluated. The performance of the specimens, owing to the cold brittleness and the impregnation effects of the cryogenic fluids, are quantitatively compared and analyzed.

본 연구에서는 액화천연가스(Liquefied natural gas, LNG) 운반선 화물창 손상으로 인한 극저온 LNG 누출 및 하중 작용 시 화물창의 초저온 보냉재를 구성하고 있는 고분자 폼(Polymer foam) 소재의 성능을 관찰하고자 하였다. LNG와 맞닿아 있는 LNG 운반선 1차 방벽은 유체 충격하중이나 오랜 시간 동안의 LNG 적재/하역으로 인해 손상이 누적 되면 누출로 이어지게 된다. 극저온 유체의 누출은 다공성 밀폐 셀 구조인 고분자 폼 내부에 영향을 끼쳐 작용 하중에 대한 거동변화를 야기한다. 본 연구에서는 단열재(Insulation)로 사용되는 고분자 소재인 폴리이소시아누레이트 폼(Polyisocyanurate foam, PIF) 시험편의 기계적 성능에 대한 평가를 수행하였다. 시험편에 극저온 액체를 함침시켜 압축실험을 진행함으로써 저온 취성(Cold brittleness)으로 인한 성능 변화와 함께 극저온 유체의 함침 영향에 대해 정량적으로 비교분석 하였다.

Keywords

References

  1. Y. H. Yu, I. Choi, S. Nam, and D. G. Lee, "Cryogenic characteristics of chopped glass fiber reinforced polyurethane foam," Composite Structures, vol. 107, no. 44, pp. 476-481, 2014. https://doi.org/10.1016/j.compstruct.2013.08.017
  2. M. Avalle, G. Belingardi, and R. Montanini, "Characterization of polymeric structural foams under compressive impact loading by means of energy- absorption diagram," International Journal of Impact Engineering, vol. 25, no. 5, pp. 455-472, 2001. https://doi.org/10.1016/S0734-743X(00)00060-9
  3. S. Ouellet, D. Cronin, and M. Worswick, "Compressive response of polymeric foams under quasi- static, medium and high strain rate conditions," Polymer Testing, vol. 25, no. 6, pp. 731-743, 2006. https://doi.org/10.1016/j.polymertesting.2006.05.005
  4. H. Luo, Y. Zhang, B. Wnag, and H. Lu, "Characterization of the compressive behavior of glass fiber reinforced polyurethane foam at different strain rates," Journal of Offshore Mechanics and Arctic Engineering, vol. 132, no. 2, pp. 1-12, 2010.
  5. A. Krundaeva, G. D. Bruyne, F. Gagliardi, and W. V. Paepegem, "Dynamic compressive strength and crushing properties of expanded polystyrene foam for different strain rates and different temperatures," Polymer Testing, vol. 55, no. 7, pp. 61-68, 2016. https://doi.org/10.1016/j.polymertesting.2016.08.005
  6. S. B. Park, C. S. Lee, S. W. Choi, J. H. Kim, C. S. Bang, and J. M. Lee, "Polymeric foams for cryogenic temperature application: Temperature range for non-recovery and brittle-fracture of microstructure," Composite Structures, vol. 136, no. 27, pp. 258-269, 2016. https://doi.org/10.1016/j.compstruct.2015.10.002
  7. KS, "Cellular plastics, rigid - Determination of compressive creep," South Korea, KS M ISO7850, 2005.
  8. J. Zhang, N. Kikuchi, V. Li, A. Yee, and G. Nusholtz, "Constitutive modeling of polymeric foam material subjected to dynamic crash loading," International Journal of Impact Engineering, vol. 21, no. 5, pp. 369-386, 1998. https://doi.org/10.1016/S0734-743X(97)00087-0
  9. KS, "Rigid cellular plastics-Determination of compression properties," South Korea, KS M ISO844, 2012.
  10. ASTM International, "Standard test method for compressive properties of rigid cellular plastics," United States of America, ASTM D1621, 2016.
  11. S. K. Kim, J. H. Kim, J. H. Lee, S. B. Park, and J. M. Lee, "Comparative study on mechanical behavior after deformation recovery of polymeric foam for ships and offshore structures," Journal of the Society of Naval Architects of Korea, vol. 53, no. 3, pp. 195-200, 2016 (in Korean). https://doi.org/10.3744/SNAK.2016.53.3.195