DOI QR코드

DOI QR Code

A numerical study on the fatigue evaluation of mark-III LNG primary barrier

수치해석을 이용한 Mark-III LNG 1차 방벽에 대한 피로 평가

  • Kwon, Sun-Beom (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kim, Myung-Sung (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • Received : 2016.08.26
  • Accepted : 2017.05.10
  • Published : 2017.05.31

Abstract

The demand of liquified natural gas is increasing due to environmental issues. This reason has resulted in increasing the capacity of liquified natural gas cargo tank. The Mark-III type primary barrier directly contacts liquified natural gas. Also, the primary barrier is under various loading conditions such as weight of liquified natural gas and sloshing loads. During a ship operation, various loads can cause fatigue failure. Therefore, the fatigue life prediction should be evaluated to prevent leakage of liquified natural gas. In the present study, the fatigue analysis of insulation system including primary barrier is performed using a finite element model. The fatigue life of primary barrier is carried out using a numerical study. The value of principle stress and the location of maximum principle stress range are calculated, and the fatigue life is evaluated. In addition, the effects on the insulation panel status and the arrangement of knot or corrugation are analyzed by comparing the fatigue life of various models. The insulation system which has best structural performance of primary barrier was selected to ensure structural integrity in fatigue assessment. These results can be used as a design guideline and a fundamental study for the fatigue assessment of primary barrier.

환경 문제로 인해 기존 연료를 대체하는 천연가스의 수요가 증가하고 있다. 이에 따라, 액화천연가스 운반선의 화물창이 거대화되면서 화물창 내의 슬로싱 하중이 증가하게 된다. 액화천연가스 화물창의 종류 중 하나인 Mark-III 타입의 1차 방벽은 액화천연가스와 직접적으로 접촉하고 있으며 슬로싱 하중 및 액화천연가스의 자중을 받는다. 슬로싱 하중에 의해 다양한 범위의 하중이 1차 방벽에 지속적으로 작용하며 이로 인해 피로 파괴를 유발할 수 있다. 따라서 본 연구에서는 Mark-III 타입의 1차 방벽을 포함한 단열시스템을 유한요소 모델로 구성하였으며 1차 방벽에 대해 피로수명을 평가하여 피로 특성을 확인하였다. 수치해석을 통해 주응력 범위 및 최대 주응력이 발생하는 위치를 계산하였으며 이를 통해 1차 방벽의 피로수명을 수치적으로 평가하였다. 또한, 다양한 단열시스템 타입에 대해 모델링을 실시하였으며, 피로수명 평가 결과를 통해 1차 방벽의 피로 파괴 안전성을 확보하는 최적의 단열시스템에 대해 제안하였다. 본 연구의 결과는 Mark-III 타입 1차 방벽의 피로 기반 설계에 있어 활용가치가 있을 것으로 판단된다.

Keywords

References

  1. M. S. Chun, M. H. Kim, W. S. Kim, S. H. Kim, and J. M. Lee, "Experimental investigation on the impact behavior of membrane-type LNG carrier insulation system," Journal of Loss Prevention in the Process Industries, vol. 22, no. 6, pp. 901-907, 2009. https://doi.org/10.1016/j.jlp.2008.09.011
  2. S. K. Kim, C. S. Lee, J. H. Kim, M. H. Kim, B. J. Noh, T. Matsumoto, and J. M. Lee, "Estimation of fatigue crack growth rate for 7% nickel steel under room and cryogenic temperatures using damage-coupled finite element analysis," Metals, vol. 5, no. 2, pp. 603-627, 2015. https://doi.org/10.3390/met5020603
  3. C. S. Lee, M. H. Kim, and J. M. Lee, "Computational study on the fatigue behavior of welded structures," International Journal of Damage Mechanics, vol. 20, no. 3, pp. 423-463, 2011. https://doi.org/10.1177/1056789509359676
  4. M. H. Kim, S. M. Lee, J. M. Lee, B. J. Noh, and W. S. Kim, "Fatigue strength assessment of MARK-III type LNG cargo containment system," Ocean Engineering, vol. 37, no. 14-15, pp. 1243-1252, 2010. https://doi.org/10.1016/j.oceaneng.2010.05.004
  5. M. H. Kim, Y. P. Kil, J. M. Lee, M. S. Chun, Y. S. Suh, W. S. Kim, B. J. Noh, J. H. Yoon, M. S. Kim, and H. S. Urm, "Cryogenic fatigue strength assessment for MARK-III insulation system of LNG carriers," Journal of Offshore Mechanics and Arctic Engineering, vol. 133, no. 4, pp. 1-10, 2011.
  6. B. C. Kim, S. H. Yoon, and D. G. Lee, "Pressure resistance of the corrugated stainless steel membranes of LNG carriers," Ocean Engineering, vol. 38, no. 4, pp. 592-608, 2011. https://doi.org/10.1016/j.oceaneng.2010.12.013
  7. J. H. Kim, S. K. Kim, M. H. Kim, and J. M. Lee, "Numerical model to predict deformation of corrugated austenitic stainless steel sheet under cryogenic temperatures for design of liquefied natural gas insulation system," Materials and Design, vol. 57, pp. 26-39, 2014. https://doi.org/10.1016/j.matdes.2013.12.037
  8. W. S. Lee and C. F. Lin, "Impact properties and microstructure evolution of 304L stainless steel," Materials Science and Engineering A, vol. 308, no. 1-2, pp. 124-135, 2001. https://doi.org/10.1016/S0921-5093(00)02024-4
  9. J. H. Kim, W. S. Park, M. S. Chun, J. J. Kim, J. H. Bae, and J. M. Lee, "Effect of pre-straining on low-temperature mechanical behavior of AISI 304L," Materials Science and Engineering A, vol. 543, pp. 50-57, 2012. https://doi.org/10.1016/j.msea.2012.02.044
  10. D. N. Veritas, Sloshing Analysis of LNG Membrane Tanks DNV, Classification Notes No. 30.9, Det Norske Veritas, Norway, 2014.
  11. M. Graczyk, and T. Moan, "A probabilistic assessment of design sloshing pressure time histories in LNG tanks," Ocean Engineering, vol. 35, no. 8-9, pp. 834-855, 2008. https://doi.org/10.1016/j.oceaneng.2008.01.020
  12. S. J. Yoon, An Experimental Study on Mechanical Properties and Fatigue Performances of SUS304L Sheet for LNG CCS, M. S. Thesis, Department of Naval Architecture and Ocean Engineering, University of Inha, Korea, 2016 (in Korean).