DOI QR코드

DOI QR Code

General linearly constrained adaptive arrays

일반 선형제약 적응배열

  • Chang, Byong Kun (Department of Electrical Engineering, Incheon National University)
  • Received : 2017.03.07
  • Accepted : 2017.05.30
  • Published : 2017.05.31

Abstract

A general linearly constrained adaptive array is proposed to improve the nulling performance. The nulling performance is examined in the array weight vector space. It is shown that the constraint plane is shifted to the origin perpendicularly by the gain factor such that the increase of the gain factor results in the decrease of the distance from the constraint plane to the origin. Thus the variation of the gain factor has an effect on the extent of orthogonality between the weight vector and the steering vectors for the interferences such that the nulling performance of the general linearly constrained adaptive array is improved by the gain factor. It is observed that the proposed adaptive array with an optimum value of the gain factor yields a better nulling performance in coherent signal environment and a similar nulling performance in noncoherent signal environment compared to the conventional linearly constrained adaptive array.

잡음신호제거 성능을 향상시키기 위하여 일반선형제약적응배열이 제안되었다. 잡음신호제거 성능이 배열계수 벡터공간에서 검토되었다. 제약면이 이득요소에 의하여 원점에 대하여 수직 방향으로 이동하는데 이득요소가 커지면 원점과의 거리는 감소하게 됨이 밝혀졌다. 따라서 이득요소의 변화가 계수벡터와 잡음신호 방향벡터와의 직교성의 정도에 영향을 주어서 일반선형제약적응배열의 잡음신호제거 성능이 이득요소에 의하여 향상되게 된다. 제안된 적응 배열은 최적의 이득요소 수치에서 간섭적인 신호환경에서는 기존의 선형제약적응배열에 비하여 더 나은 잡음신호제거 성능을 나타내고 비간섭적인 신호환경에서는 비슷한 잡음신호제거 성능을 나타냄이 관찰되었다.

Keywords

References

  1. O. L. Frost, III, "An algorithm for linearly constrained adaptive array processing," Proc. IEEE 60, 926-935 (1972). https://doi.org/10.1109/PROC.1972.8817
  2. B. Widrow, K. M. Duvall, R. P. Gooch, and W. C. Newman, "Signal cancellation phenomena in adaptive antennas: causes and cures," IEEE Trans. Antennas Propagat. 30, 469-478 (1982). https://doi.org/10.1109/TAP.1982.1142804
  3. T. J. Shan and T. Kailath, "Adaptive beamforming for coherent signals and interferences," IEEE Trans. Acoust., Speech, and Signal Proc. 33, 527-536 (1985). https://doi.org/10.1109/TASSP.1985.1164583
  4. B. K. Chang, C. H. Jeon, and D. H. Song, "Performance improvement in alternate mainbeam nulling by adaptive estimation of convergence parameters linearly constrained adaptive arrays," J. KIMICS, 7, 392-398 (2009).
  5. B. K. Chang and C. D. Jeon, "Research for performance analysis of antenna arrays in basestation for GSM system" (in Korean), J. KIEES, 16, 740-745 (2005).
  6. B. K. Chang, T. Y. Kim, and Y. K. Lee, "A Novel approach to general linearly contrained adaptive arays," JICCE 2, 108-116 (2012).
  7. B. K. Chang, N. Ahmed, and D. H. Youn, "Fast convergence adaptive beamformers with reduced signal cancellation," Proc. Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, 823-827 (1988).
  8. B. K. Chang, "Optimum array processing with variable linear constraint," JICCE 12, 140-144, (2014).
  9. S. P. Applebaum and D. J. Champman, "Adaptive arrays with mainbeam constraints," IEEE Trans. Antennas Propag. AP-24, 650-662 (1976).
  10. J. H. Chang and F. B. Tuteur, "A new class of adaptive array processors," J. Acoust. Soc. Am. 49, 639-649 (1971). https://doi.org/10.1121/1.1912403
  11. R. T. Lacoss, "Adaptive combining of wideband array data for optimal reception," IEEE Trans. Geosci. Electron. GE-6, 78-86 (1968).
  12. B. Widrow and S. D. Stearns, Adaptive Signal Processing (Prentice Hall, New Jersey, 1985), pp. 56-60.