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ABSTRACT: A general linearly constrained adaptive array is proposed to improve the nulling performance. The
nulling performance is examined in the array weight vector space. It is shown that the constraint plane is shifted
to the origin perpendicularly by the gain factor such that the increase of the gain factor results in the decrease of
the distance from the constraint plane to the origin. Thus the variation of the gain factor has an effect on the extent
of orthogonality between the weight vector and the steering vectors for the interferences such that the nulling
performance of the general linearly constrained adaptive array is improved by the gain factor. It is observed that
the proposed adaptive array with an optimum value of the gain factor yields a better nulling performance in
coherent signal environment and a similar nulling performance in noncoherent signal environment compared to

the conventional linearly constrained adaptive array.
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. Introduction

The linearly constrained adaptive arraysm] depends on
the extent of the correlatedness of the desired signal and
the interference signals. If the desired signal is partially or
totally correlated with the interference signals, the desired
signal is partially or totally cancelled in the array output. A
variety of algorithms were proposed to reduce the signal

cancellation phenomena. 8]
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In this paper, a general linearly constrained adaptive
array is proposed to improve the nulling performance. The
nulling performance is examined in the array weight vector
space. It is assumed that the direction of the desired signal
is known a priori. The error output is generated by the
array output subtracted by the desired response which is
formed as the output of the multichannel uniform all-pass
filter weighted by a gain factor.

The linearly constrained broadband adaptive array is
implemented in coherent and noncoherent signal environmen-
ts. It is shown that the value of the gain factor affects the
nulling performance such that there exists a value of the
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gain factor which yields a best nulling performance.
Adaptive Array processing techniques have been

(101

applied in many areas which include radar,” sonar,"” and

seismology.[] L

Il. General linearly constrained
broadband adaptive array

In the conventional linearly constrained adaptive array'"
proposed by Frost, it is assumed that the desired signal is
uncorrelated with the interference signals. If the desired
signal is correlated with the interferences, it is demonstrated
that the desired signal is cancelled in the array output.[z]

A general linearly constrained adaptive array is proposed
to reduce the signal cancellation phenomena in coherent
and noncoherent signal environments. The general linearly
constrained broadband adaptive array with N sensor elements
followed by L taps per element is shown in Fig. 1.

The desired signals at each channel are delayed after they
pass through the steering time delay elements right after the
each sensor such that the desired signal becomes in phase
affer the steering time delay elements. The desired response
is generated by multiplying the output of the multichannel

uniform allpass filter (i.e., all weights zero except for the
first column of uniform weights) by a gain factor.

The optimum weight vector which yields a minimummean
square error output with a unit gain constraint at the look
direction (i.e., the direction of the desired signal) can be found
by solving the following constrained optimization problem.

min (w— ¢8) "R(w— gs)

subject to CTw=f, (1)

where an NVZ < 1 weight vector w= [w,w, -+ w,,]”, the
NL =1 weight vector s of the multichannel allpass filter
1 1 |7

is glvenby 5= [i— = =000

NN v in the figure,

¢ = ]_V’ , 1 <i <M. Ris an NLxNL input signal correlation
matrix, which is given by R= E[zz7] and the input signal
vector &= [z, -+ 5, ]”. The Ith column vector of the
NL > L constraint matrix C' consists of elements of 0
except of the {th group of /V elements of 1, and the Z < 1
constraint vector is given by

f=M0o0..0]"

Nqk

X4

(3]
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Fig. 1. General linearly constrained broadband adaptive array.
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The optimum weight vector can be found by the method
of Lagrange multipliers solving the unconstrained optimi

zation problem with the following objective function.

O(w)= (w—gs) TR(w—gs) +\F(CTw—F), (2

where X\ is a L1 Lagrange multiplier vector. The
gradient of the objective function is given by

80(w)
ow

Vv (w)= =2Rw—2gRs+ CA. 3)

By setting the gradient equal to zero, we have the optimum

weight vector as
w,=gs—R 'O\, 4

where A, is 1/2.

The optimum weight vector is obtained by finding A,
using the linear constraint in (1), substituting the resulting
A, for that in (4). Then the optimum weight vector is given by

w, =glI-RC(CTR 'O 'CT]s+
R'c(CTR 'O, ©)

The optimum weight vector in (5) could be interpreted
geometrically in the translated weight vector space. If we
denote the translated weight vector (w—gS) as v, the
optimization problem in the translated weight vector space

can be formulated as

min v7Ry

subject to CTv=(1—g)f. (6)

The objective function with the Lagrange multiplier

vector is represented as
O(v)=1/20TRv+AT(CTv— (1—g)f). )

The optimum weight vector using the gradient of O(v) is

expressed as
v=(01-g)RT'C(C"R'O'}. ®)

From (8), it is observed in the translated weight vector
space that the constraint plane is shifted to the origin
perpendicularly by the gain factor ¢ such that the increase
of the gain factor results in the decrease of the distance
from the constraint plane to the origin. Thus the variation
of the gain factor has an effect on the extent of orthogonality
between the weight vector and the steering vectors for the
interferences such that the nulling performance of the general
linearly constrained adaptive array may be improved by
the gain factor compared to the conventional linearly
constrained adaptive array.

lll. General adaptive algorithm

The general linearly constrained adaptive algorithm is
derived by minimizing the mean square error using the

steepest descent method.""”

Wyt :wkt+u(_v(w)kt)’ (9)
where 1 is a convergence parameter and k is a iteration
index. Substituting the gradient in (3) for that in (9), we
have the following iterative equation.

Wiy 1= Wit pRwt pg + pgRs— pnCA,,. (10)

We find the Lagrange multiplier vector A, by applying
the (k+1) th weight vector w, , , to the linear constraint
in (1) to find the A, and substituting the A, for that in (10),

we have the following general linearly constrained
adaptive algorithm.

w,, = Plw,— pR(w,—gs)|+F, (11)

where the NZ > NL projection matrix P is given by
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pP=r-cc'o'c". (12)

which projects a vector onto the constraint subspace
which is the orthogonal complement of the column space
of Cand the NL X 1 vector F'is given by

F=c(cTo) 'f. (13)

which is in the column space of € and normal to the
constraint subspace.

A general linearly constrained LMS (Least Mean Square)
algorithm can be obtained by substituting a instantaneous
correlation matrix z,z; for R in (11) and rearranging the
resulting equation. Then the general linearly constrained
LMS algorithm is expressed as

w,,, = Plw,—pe,z, ]+ F, (14)

where e, is the output error signal.

The array weights are updated iteratively by the general
linearly constrained LMS algorithm in the computer sim-
ulation.

IV, Simulation results

The linearly constrained broadband adaptive array with 5
sensor elements and 3 weights per element is employed to
demonstrate the nulling performance of the general linearty
constrained adaptive array. It is assumed that the incoming
signals are plain waves. The incoming signals are generated
by passing a white Gaussian random signal through the 4
th-order Butterworth filter such that the bandwidth is 3 Hz
with the lower and upper cutoff frequencies 8 Hzand 11 Hz
respectively. The sampling frequency is 608 Hz. The
convergence parameter is assumed to be 0.0001.

The gain factor is varied to improve the mulling performance
in coherent and nocoherent signal environments. The simu
lation results i are redisplayed to demonstrate the nulling

performance.
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A) Case for one coherent interference

It is assumimed that a coherent interference is incident at
30° with respect to the array normal. The variation of the
error power between the array output and the desired
signal is displayed in Fig. 2. The optimum value of is
shown to be 0.33. The comparison of the array performance
for g = 0.33, the conventional linearly constrained adaptive
array proposed by Frost and the case for ¢ = 2.0 are shown
in Figs. 3 and 4 with respect to the array output and the
desired signal for £ =1 ~ 10000 and 28001 ~ 29000.

It is shown for 28001 < k < 29000 that the case for
g = 0.33 performs best while the Frost’s performs better
than the case for g = 2.0. The beam patterns are shown in
Fig. 5, in which the case for g = 0.33 forms a deepest null.

0.16

0.14 //

0.12

0.1

0.08

Error power

0.06

0.04

0.02 o

0 02 0.4 0.6 0.8 1.0 12 1.4 16 18 20
Gain factor

Fig. 2. Variation of the error power in terms of gain
factor for one coherent interference case.

0.5

A A A D
B WA
O \VAVAVA y

-05 L L L L L L L L \
0 100 200 300 400 500 600 700 800 900 1000

0.5

. A 7
S A RN e A~ DA A
[ T A Ve U WAV AW R o s VAV \/ &\/j{ VAN

Magnitude

-05 . . . . . . . . )
0 100 200 300 400 500 600 700 800 900 1000

0.5

WaY A

o~ - -~ i Fa
T N AT AV A C©

-05 I I I I I I L L |
0 100 200 300 400 500 600 700 800 900 1000
Number of samples (k)

Fig. 3. Comparison of array output (solid line) and desired
signal (dotted line) for one coherent interference case;
(@ g = 0.33, (b) Frost's, (c) g = 2, for 1<4A<1000.
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Fig. 4. Comparison of array output (solid line) and desired
signal (dotted line) for one coherent interference case;
(@) g = 0.33, (b) Frost's, (c) g = 2, for 28001 <A<29000.
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Fig. 5. Comparison of beam patterns for one-coherent
interference case at 30°.

B) Case for two coherent interferences

It is assummed that two coherent interferences are incident
at-54.3° and 57.5°. The variation of the error power between
the array output and the desired signal is displayed in Fig, 6.
The optimum value of ¢ is shown to be 0.29. The compari-
son of the array performance for g = 0.29. the conventional
linearly constrained adaptive array proposed by Frost, and
the case for g = 2.0 are shown in Figs. 7 and 8 with respect
to the array output and the desired signal for £ =1 ~ 1000
and 28001 ~ 29000.

It is shown for k= 28001 ~ 29000 that the case for
g = 0.29 performs best while Frost’s performs better than
the case for g = 2.0 The beam patterns are shown in Fig, 9,
in which the case for g =0.29 forms two deepest nulls
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Fig. 6. Variation of the error power in terms of gain

factor for two—-coherent interference case.
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Fig. 7. Comparison of array output (solid line) and desired
signal (dotted line) for two-coherent interference case;
(@) g = 0.29, (b) Frost's, (c) g = 2.0, for 1<A<1000.
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Fig. 8. Comparison of array output (solid line) and desired
signal (dotted line) for two-coherent interference case;
(@) g = 0.29, (b) Frost's, (c) g = 2.0, for 28001 <4<

29000.

around the two incident angles -54.3° and 57.5° of the

coherent interferences.
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Fig. 9. Comparison of beam patterns for two-coherent
interference case at —-54.3°, 57.5°.

C) Case for one noncoherent interference

It is assummed that a noncoherent interference is
incident at -48.5°. The variation of the error power between
the array output and the desired signal is displayed in Fig, 10.
The optimum value of g is shown to be 0.09. The
comparison of the array performance for g = 0.09, the
conventional linearly constrained adaptive array proposed
by Frost, and the case for g = 2.0 are shownin Figs. 11 and
12 with respect to the array output and the desired signal for
k=1~ 1000 and 28001 ~ 29000.

It is shown for & =28001 ~ 29000 that the case for
g = 0.09 and the Frost’s array yield a similar performance
while both of them performs better than the case for
g = 2.0. The beam patterns are shown in Fig, 13, in which
the case for ¢ = 0.09 and the Frost’s array yields a similar
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Fig. 10. Variation of the error power in terms of gain
factor for one noncoherent interference case.
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Fig. 11. Comparison of array output (solid line)and
desired signal (dotted line) for one coherent interference
case; (a) g = 0.09, (b) Frost's, () g = 2.0, for 1<4<
1000.
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Fig. 12. Comparison of array output (solid line) and
desired signal (dotted line) for one coherent interference
case; (a) g = 0.09, (b) Frost's, (c) g = 2.0, for 28001 <
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Fig. 13. Comparison of beam patterns for one nonco-
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gain at the incident angle of the noncoherent interference.
It is observed that a more exact null is formed at the incident
angle of the noncoherent interference for the case of
g = 0.09 than for the Frost’s.

V. Conclusions

A general linearly constrained adaptive array is
proposed to improve the nulling performance in coherent
and noncoherent signal environments. The nulling perfor-
mance is examined in the array weight vector space. It is
observed that the constraint plane is shifted to the origin
perpendicularly by the value of the gain factor such that the
increase of the gain factor results in the decrease of the
distance from the constraint plane to the origin.

Thus the variation of the gain factor has an effect on the
extent of orthogonality between the weight vector and the
steering vectors for the interference signals such that the
orthogonality between the weight vector and the steering
vectors for the interference signals is improved at an
optimum gain factor. Therefore, the nulling performance
of the general linearly constrained adaptive array with an
optimum gain factor is improved compared to the
conventional linearly constrained adaptive array.

It is demonstrated in the computer simulation that the
general linearly constrained adaptive array performs better
at the optimal gain factor than the conventional linearly
constrained adaptive array in coherent environment while
it yields a similar performance to the conventional linearly

constrained adaptive array in noncoherent environment.
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