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ABSTRACT: A general linearly constrained adaptive array is proposed to improve the nulling performance. The 

nulling performance is examined in the array weight vector space. It is shown that the constraint plane is shifted 

to the origin perpendicularly by the gain factor such that the increase of the gain factor results in the decrease of 

the distance from the constraint plane to the origin. Thus the variation of the gain factor has an effect on the extent 

of orthogonality between the weight vector and the steering vectors for the interferences such that the nulling 

performance of the general linearly constrained adaptive array is improved by the gain factor. It is observed that 

the proposed adaptive array with an optimum value of the gain factor yields a better nulling performance in 

coherent signal environment and a similar nulling performance in noncoherent signal environment compared to 

the conventional linearly constrained adaptive array.
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초    록: 잡음신호제거 성능을 향상시키기 위하여 일반선형제약적응배열이 제안되었다. 잡음신호제거 성능이 배열계

수 벡터공간에서 검토되었다. 제약면이 이득요소에 의하여 원점에 대하여 수직 방향으로 이동하는데 이득요소가 커지

면 원점과의 거리는 감소하게 됨이 밝혀졌다. 따라서 이득요소의 변화가 계수벡터와 잡음신호 방향벡터와의 직교성의 

정도에 영향을 주어서 일반선형제약적응배열의 잡음신호제거 성능이 이득요소에 의하여 향상되게 된다. 제안된 적응

배열은 최적의 이득요소 수치에서 간섭적인 신호환경에서는 기존의 선형제약적응배열에 비하여 더 나은 잡음신호제

거 성능을 나타내고 비간섭적인 신호환경에서는 비슷한 잡음신호제거 성능을 나타냄이 관찰되었다.
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I. Introduction

The linearly constrained adaptive arrays
[1,2]

 depends on 

the extent of the correlatedness of the desired signal and 

the interference signals. If the desired signal is partially or 

totally correlated with the interference signals, the desired 

signal is partially or totally cancelled in the array output. A 

variety of algorithms were proposed to reduce the signal 

cancellation phenomena.
[2-8]

In this paper, a general linearly constrained adaptive 

array is proposed to improve the nulling performance. The 

nulling performance is examined in the array weight vector 

space. It is assumed that the direction of the desired signal 

is known a priori. The error output is generated by the 

array output subtracted by the desired response which is 

formed as the output of the multichannel uniform all-pass 

filter weighted by a gain factor.

The linearly constrained broadband adaptive array is 

implemented in coherent and noncoherent signal environmen-

ts. It is shown that the value of the gain factor affects the 

nulling performance such that there exists a value of the 
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Fig. 1. General linearly constrained broadband adaptive array.

gain factor which yields a best nulling performance.

Adaptive Array processing techniques have been 

applied in many areas which include radar,
[9]
 sonar,

[10] 
and 

seismology.
[11]

II. General linearly constrained 

broadband adaptive array

In the conventional linearly constrained adaptive array
[1]
 

proposed by Frost, it is assumed that the desired signal is 

uncorrelated with the interference signals. If the desired 

signal is correlated with the interferences, it is demonstrated 

that the desired signal is cancelled in the array output.
[2]

A general linearly constrained adaptive array is proposed 

to reduce the signal cancellation phenomena in coherent 

and noncoherent signal environments. The general linearly 

constrained broadband adaptive array with N sensor elements 

followed by L taps per element is shown in Fig. 1.

The desired signals at each channel are delayed after they 

pass through the steering time delay elements right after the 

each sensor such that the desired signal becomes in phase 

after the steering time delay elements. The desired response 

is generated by multiplying the output of the multichannel 

uniform allpass filter (i.e., all weights zero except for the 

first column of uniform weights) by a gain factor.

The optimum weight vector which yields a minimum mean 

square error output with a unit gain constraint at the look 

direction (i.e., the direction of the desired signal) can be found 

by solving the following constrained optimization problem.

min 

subject to    ,  (1)

where an × weight vector  




⋯


, the 

× weight vector   of the multichannel allpass filter

is given by  






⋯



 ⋯⋯   in the figure,







 , 1< i <N. R is an NL×NL input signal correlation

matrix, which is given by     and the input signal 

vector  



⋯


. The  th column vector of the 

×  constraint matrix   consists of elements of 0 

except of the  th group of  elements of 1, and the × 

constraint vector is given by

 … 
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The optimum weight vector can be found by the method 

of Lagrange multipliers solving the unconstrained optimi

zation problem with the following objective function.

  , (2)

where  is a × Lagrange multiplier vector. The 

gradient of the objective function is given by

∇



 . (3)

By setting the gradient equal to zero, we have the optimum 

weight vector as





 , (4)

where 

 is .

The optimum weight vector is obtained by finding 

 

using the linear constraint in (1), substituting the resulting



 for that in (4). Then the optimum weight vector is given by






  







  



 



. (5)

The optimum weight vector in (5) could be interpreted 

geometrically in the translated weight vector space. If we 

denote the translated weight vector   as , the 

optimization problem in the translated weight vector space 

can be formulated as

min 

subject to   .  (6)

The objective function with the Lagrange multiplier 

vector is represented as

  . (7)

The optimum weight vector using the gradient of   is 

expressed as



  

 



. (8)

From (8), it is observed in the translated weight vector 

space that the constraint plane is shifted to the origin 

perpendicularly by the gain factor   such that the increase 

of the gain factor results in the decrease of the distance 

from the constraint plane to the origin. Thus the variation 

of the gain factor has an effect on the extent of orthogonality 

between the weight vector and the steering vectors for the 

interferences such that the nulling performance of the general 

linearly constrained adaptive array may be improved by 

the gain factor compared to the conventional linearly 

constrained adaptive array.

III. General adaptive algorithm

The general linearly constrained adaptive algorithm is 

derived by minimizing the mean square error using the 

steepest descent method.
[12]






∇


 , (9)

where  is a convergence parameter and  is a iteration 

index. Substituting the gradient in (3) for that in (9), we 

have the following iterative equation.












. (10)

We find the Lagrange multiplier vector 

 by applying 

the   th weight vector 


 to the linear constraint 

in (1) to find the 

 and substituting the 


 for that in (10), 

we have the following general linearly constrained 

adaptive algorithm.




 

 


 , (11)

where the ×  projection matrix  is given by
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Fig. 2. Variation of the error power in terms of gain 

factor for one coherent interference case.

Fig. 3. Comparison of array output (solid line) and desired 

signal (dotted line) for one coherent interference case; 

(a) g = 0.33, (b) Frost's, (c) g = 2, for 1≤k≤1000.

 



. (12)

which projects a vector onto the constraint subspace 

which is the orthogonal complement of the column space 

of   and the × vector  is given by

  



. (13)

which is in the column space of   and normal to the 

constraint subspace.

A general linearly constrained LMS (Least Mean Square) 

algorithm can be obtained by substituting a instantaneous 

correlation matrix 



 for  in (11) and rearranging the 

resulting equation. Then the general linearly constrained 

LMS algorithm is expressed as


 


 , (14)

where 

 is the output error signal.

The array weights are updated iteratively by the general 

linearly constrained LMS algorithm in the computer sim-

ulation.

IV. Simulation results

The linearly constrained broadband adaptive array with 5 

sensor elements and 3 weights per element is employed to 

demonstrate the nulling performance of the general linearly 

constrained adaptive array. It is assumed that the incoming 

signals are plain waves. The incoming signals are generated 

by passing a white Gaussian random signal through the 4 

th-order Butterworth filter such that the bandwidth is 3 Hz 

with the lower and upper cutoff frequencies 8 Hz and 11 Hz 

respectively. The sampling frequency is 608 Hz. The 

convergence parameter is assumed to be 0.0001.

The gain factor is varied to improve the nulling performance 

in coherent and nocoherent signal environments. The simu

lation results in
[6]
 are redisplayed to demonstrate the nulling 

performance.

A) Case for one coherent interference

It is assummed that a coherent interference is incident at 

30° with respect to the array normal. The variation of the 

error power between the array output and the desired 

signal is displayed in Fig. 2. The optimum value of is 

shown to be 0.33. The comparison of the array performance 

for   , the conventional linearly constrained adaptive 

array proposed by Frost and the case for    are shown 

in Figs. 3 and 4 with respect to the array output and the 

desired signal for  ∼ and ∼.

It is shown for ≤ k≤ that the case for 

   performs best while the Frost’s performs better 

than the case for   . The beam patterns are shown in 

Fig. 5, in which the case for    forms a deepest null.
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Fig. 6. Variation of the error power in terms of gain 

factor for two-coherent interference case.

Fig. 7. Comparison of array output (solid line) and desired 

signal (dotted line) for two-coherent interference case;

(a) g = 0.29, (b) Frost's, (c) g = 2.0, for 1≤k≤1000.

Fig. 8. Comparison of array output (solid line) and desired 

signal (dotted line) for two-coherent interference case; 

(a) g = 0.29, (b) Frost's, (c) g = 2.0, for 28001≤k≤

29000.

Fig. 4. Comparison of array output (solid line) and desired 

signal (dotted line) for one coherent interference case; 

(a) g = 0.33, (b) Frost's, (c) g = 2, for 28001≤k≤29000.

Fig. 5. Comparison of beam patterns for one-coherent 

interference case at 30°.

B) Case for two coherent interferences

It is assummed that two coherent interferences are incident 

at -54.3° and 57.5°. The variation of the error power between 

the array output and the desired signal is displayed in Fig. 6. 

The optimum value of   is shown to be 0.29. The compari-

son of the array performance for   . the conventional 

linearly constrained adaptive array proposed by Frost, and 

the case for    are shown in Figs. 7 and 8 with respect 

to the array output and the desired signal for  ∼ 

and ∼.

It is shown for  ∼ that the case for 

   performs best while Frost’s performs better than 

the case for    The beam patterns are shown in Fig. 9, 

in which the case for    forms two deepest nulls around the two incident angles -54.3° and 57.5° of the 

coherent interferences.
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Fig. 9. Comparison of beam patterns for two-coherent

interference case at -54.3°, 57.5°.
Fig. 11. Comparison of array output (solid line)and 

desired signal (dotted line) for one coherent interference 

case; (a) g = 0.09, (b) Frost's, (c) g = 2.0, for 1≤k≤

1000.

Fig. 12. Comparison of array output (solid line) and 

desired signal (dotted line) for one coherent interference 

case; (a) g = 0.09, (b) Frost's, (c) g = 2.0, for 28001≤

k≤29000.

Fig. 13. Comparison of beam patterns for one nonco-

herent interference case at -48.5°.
Fig. 10. Variation of the error power in terms of gain 

factor for one noncoherent interference case.

C) Case for one noncoherent interference

It is assummed that a noncoherent interference is 

incident at -48.5°. The variation of the error power between 

the array output and the desired signal is displayed in Fig. 10. 

The optimum value of   is shown to be 0.09. The 

comparison of the array performance for   , the 

conventional linearly constrained adaptive array proposed 

by Frost, and the case for    are shown in Figs. 11 and 

12 with respect to the array output and the desired signal for 

 ∼ and ∼.

It is shown for  ∼ that the case for 

   and the Frost’s array yield a similar performance 

while both of them performs better than the case for 

  . The beam patterns are shown in Fig. 13, in which 

the case for    and the Frost’s array yields a similar 
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gain at the incident angle of the noncoherent interference. 

It is observed that a more exact null is formed at the incident 

angle of the noncoherent interference for the case of 

   than for the Frost’s.

V. Conclusions

A general linearly constrained adaptive array is 

proposed to improve the nulling performance in coherent 

and noncoherent signal environments. The nulling perfor-

mance is examined in the array weight vector space. It is 

observed that the constraint plane is shifted to the origin 

perpendicularly by the value of the gain factor such that the 

increase of the gain factor results in the decrease of the 

distance from the constraint plane to the origin.

Thus the variation of the gain factor has an effect on the 

extent of orthogonality between the weight vector and the 

steering vectors for the interference signals such that the 

orthogonality between the weight vector and the steering 

vectors for the interference signals is improved at an 

optimum gain factor. Therefore, the nulling performance 

of the general linearly constrained adaptive array with an 

optimum gain factor is improved compared to the 

conventional linearly constrained adaptive array.

It is demonstrated in the computer simulation that the 

general linearly constrained adaptive array performs better 

at the optimal gain factor than the conventional linearly 

constrained adaptive array in coherent environment while 

it yields a similar performance to the conventional linearly 

constrained adaptive array in noncoherent environment.
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