DOI QR코드

DOI QR Code

Analysis of the beam pattern of a thickness shear mode vibrator for vector hydrophones

벡터 하이드로폰을 위한 두께 전단형 진동자의 빔 패턴 해석

  • Received : 2017.03.17
  • Accepted : 2017.05.30
  • Published : 2017.05.31

Abstract

Typical hydrophones in line array sensors for early detection of covert underwater targets can measure only sound-pressure-magnitude with the limitation of being unable to identify the direction of an incoming wave. In this study, a thickness shear mode vibrator was proposed as the main component of an inertia type vector hydrophone to measure both magnitude and direction of acoustic signals from targets. The equation to analyze the output voltage of the vibrator to an external force was derived, and the validity of the equation was verified through finite element analysis of a PMN-PT single crystal vibrator. The analysis results from this study will be utilized in the future for the design of inertia type vector hydrophones made of thickness shear vibrators.

수중에서 은밀하게 움직이는 표적을 조기에 탐지하기 위한 선배열센서에 적용되는 통상의 하이드로폰은 표적신호의 크기만 측정할 뿐, 외부에서 들어오는 음향신호의 방향은 파악할 수 없는 한계가 있다. 이에 본 연구에서는 표적으로부터의 음향신호의 크기와 방향을 동시에 탐지할 수 있는 관성형 벡터 하이드로폰의 기본 구성품으로 두께 전단형 진동자를 제안하였다. 외력에 대한 진동자의 출력 전압을 해석할 수 있는 수식을 유도하였으며, PMN-PT 단결정 진동자에 대한 유한요소해석을 통해 수식의 타당성을 검증하였다. 본 연구에서 얻어진 해석 결과는 향후 두께 전단형 진동자로 구성된 관성형 벡터 하이드로폰 설계에 활용될 것이다.

Keywords

References

  1. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2007), pp. 176-194.
  2. C. B. Leslie, J. M. Kendall, and J. L. Jones, "Hydrophone for measuring particle velocity," J. Acoust. Soc. Am. 28, 711-715 (1956). https://doi.org/10.1121/1.1908455
  3. B. M. Abraham, "Lowcost dipole hydrophone for use in towed arrays," AIP Conf. Proc. 368, 189-201 (1996).
  4. Y. Lim, J. Lee, C. Joh, H. Seo, and Y. Roh, "Design of a multimode piezoelectric spherical vector sensor for a cardioid beam pattern" (in Korean), J. Acoust. Soc. Kr. 32, 32-42 (2013). https://doi.org/10.7776/ASK.2013.32.1.032
  5. S. H. Ko, G. A. Brigham, and J. L. Butler, "Multimode spherical hydrophone," J. Acoust. Soc. Am. 56, 1890-1898 (1974). https://doi.org/10.1121/1.1903528
  6. R. S. Gordon, L. Parad, and J. L. Butler, "Equivalent circuit of a ceramic ring transducer operated in the dipole mode," J. Acoust. Soc. Am. 58, 1311-1314 (1975). https://doi.org/10.1121/1.380814
  7. J. L. Butler and S. L. Ehrlich, "Superdirective spherical radiator," J. Acoust. Soc. Am. 61, 1427-1431 (1977). https://doi.org/10.1121/1.381457
  8. A. L. Butler, J. L. Butler, W. L. Dalton, and J. A. Rice, "Multimode directional telesonar transducer," in Proc. IEEE OCEANS 2000 MTS Conf. and Exhi. 1289-1292 (2000).
  9. A. L. Butler, J. L. Butler, J. A. Rice, W. L. Dalton, J. Baker, and P. Pietryka, "A tri-modal directional modem transducer," in Proc. IEEE OCEANS 2003, 1554-1560 (2003).
  10. J. A. McConnell, S. C. Jensen, and J. P. Rudzinsky, "Forming first-and second-order cardioids with multimode hydrophones," in Proc. IEEE OCEANS 2006, 1-6 (2006).
  11. Y. Lim, J. Lee, C. Joh, H. Seo, and Y. Roh, "Design of a multimode type ring vector sensor" (in Korean), J. Acoust. Soc. Kr. 32, 484-493 (2013). https://doi.org/10.7776/ASK.2013.32.6.484
  12. Y. S. Lim, C. Y. Joh, H, S. Seo, J. Y. Kim, and Y. R. Roh, "Design and fabrication of a multimode ring vector hydrophone," Jap. J. App. Phy. 53, 07KD07 (2014). https://doi.org/10.7567/JJAP.53.07KD07
  13. Y. Lim and Y. Roh, "Incidence angle estimation by the Tonpilz type underwater acoustic vector sensor with a quadrupole structure" (in Korean), J. Acoust. Soc. Kr. 31, 569-579 (2012). https://doi.org/10.7776/ASK.2012.31.8.569
  14. Y. Lim and Y. Roh, "Fabrication and characterization of an underwater acoustic Tonpilz vector sensor for the estimation of sound source direction" (in Korean), J. Acoust. Soc. Kr. 34, 351-359 (2015). https://doi.org/10.7776/ASK.2015.34.5.351
  15. W. Kim, W. Kim, H. Bae, C. Joh, H. Seo, and S. Choi, "Direction-of-arrival estimation for the ring-type multimode vector hydrophone based on the pressure graidient-acceleration relationship" (in Korean), J. Acoust. Soc. Kr. 34, 66-74 (2015). https://doi.org/10.7776/ASK.2015.34.1.066
  16. T. B. Gabrielson, D. L. Gardner, and S. L. Garrett, "A simple neutrally buoyant sensor for direct measurement of particle velocity and intensity in water," J. Acoust. Soc. Am. 97, 2227-2237 (1995). https://doi.org/10.1121/1.411948
  17. K. J. Bastyr and G. C. Lauchle, "Development of a velocity gradient underwater acoustic intensity sensor," J. Acoust. Soc. Am. 106, 3178-3188 (1999). https://doi.org/10.1121/1.428172
  18. M. T. Silvia and R. T. Richards "A theoretical and experimental investigation of low-frequency acoustic vector sensors," in Proc. IEEE OCEANS 2002, 1886-1897 (2002).
  19. J. C. Shipps and K. Deng, "A miniature vector sensor for line array applications," in Proc. IEEE OCEANS 2003, 2367-2370 (2003).
  20. J. A. McConnell, "Analysis of a compliantly suspended acoustic velocity sensor," J. Acoust. Soc. Am. 113, 1395-1405 (2003). https://doi.org/10.1121/1.1542646
  21. K. Kim, T. B. Gabrielson, and G. C. Lauchle, "Development of an accelerometer-based underwater acoustic intensity sensor," J. Acoust. Soc. Am. 116, 3384-3392 (2004). https://doi.org/10.1121/1.1804632
  22. P. A. Wlodkowski, K. Deng, and M. Kahn, "The development of high-sensitivity, low-noise accelerometers utilizing single crystal piezoelectric materials," J. Sensors and Actuators, 90, 125-131 (2001). https://doi.org/10.1016/S0924-4247(01)00449-6
  23. K. K. Deng, "Underwater acoustic vector sensor using transverse-response free, shear mode, PMN-PT crystal," US Patent 7066026, 2006.
  24. J. F. Nye, Physical Properties of Crystals (Oxford University Press, New York, 1986), pp. 134.
  25. V. M. Ristic, Principles of Acoustic Devices (John Wiley & Sons, New York, 1983), pp. 212-213.
  26. E. Sun and W. Cao, "Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications," Progress in Materials Science 65, 124-210 (2014).