DOI QR코드

DOI QR Code

FRP Confinement of Heat-Damaged Circular RC Columns

  • Received : 2016.02.27
  • Accepted : 2016.11.17
  • Published : 2017.03.30

Abstract

To investigate the effectiveness of using fiber reinforced polymer (FRP) sheets in confining heat-damaged columns, 15 circular RC column specimens were tested under axial compression. The effects of heating duration, stiffness and thickness of the FRP wrapping sheets were examined. Two specimen groups, six each, were subjected to elevated temperatures of $500^{\circ}C$ for 2 and 3 h, respectively. Eight of the heat-damaged specimens were wrapped with unidirectional carbon and glass FRP sheets. Test results confirmed that elevated temperatures adversely affect the axial load resistance and stiffness of the columns while increasing their ductility and toughness. Full wrapping with FRP sheets increased the axial load capacity and toughness of the damaged columns. A single layer of the carbon sheets managed to restore the original axial resistance of the columns heated for 2 h yet, two layers were needed to restore the axial resistance of columns heated for 3 h. Glass FRP sheets were found to be less effective; using two layers of glass sheets managed to restore the axial load carrying capacity of columns heated for 2 h only. Confining the heat-damaged columns with FRP circumferential wraps failed in recovering the original axial stiffness of the columns. Test results confirmed that FRP-confining models adopted by international design guidelines should address the increased confinement efficiency in heat-damaged circular RC columns.

Keywords

References

  1. ACI 211.1-91. (1991). Standard practice for selecting proportions for normal, heavyweight and mass concrete (reapproved 2009). Farmington Hills, MI: American Concrete Institute.
  2. ACI 318-14. (2014). Building code requirements for structural concrete (ACI 318-14) and commentary. Farmington Hills, MI: American Concrete Institute.
  3. ACI 440.2R. (2008). Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. Farmington Hills, MI: American Concrete Institute.
  4. Al Abadi, H., Abo El-Naga, H., Shaia, H., & Paton-Cole, V. (2016). Refined approach for modelling strength enhancement of FRP-confined concrete. Construction and Building Materials, 119(30), 152-174. https://doi.org/10.1016/j.conbuildmat.2016.04.119
  5. Al-Kamaki, Y., Al-Mahaidi, R., & Bennets, I. D. (2015). Experimental and numerical study of the behaviour of heatdamaged RC circular columns confined with CFRP fabric. Composite Structures, 133, 679-690. https://doi.org/10.1016/j.compstruct.2015.07.116
  6. Al-Nimry, H., Haddad, R., Afram, S., & Abdel-Halim, M. (2013). Effectiveness of advanced composites in repairing heat-damaged RC columns. Materials and Structures, 46(11), 1843-1860. https://doi.org/10.1617/s11527-013-0022-8
  7. Arioz, O. (2007). Effects of elevated temperatures on properties of concrete. Fire Safety Journal, 42(8), 516-522. https://doi.org/10.1016/j.firesaf.2007.01.003
  8. Arioz, O. (2009). Retained properties of concrete exposed to high temperatures: Size effect. Fire and Materials, 33(5), 211-222. https://doi.org/10.1002/fam.996
  9. Bailey, C., & Yaqub, M. (2012). Seismic strengthening of shear critical post-heated circular concrete columns wrapped with FRP composite jackets. Composite Structures, 94(3), 851-864. https://doi.org/10.1016/j.compstruct.2011.09.004
  10. Benzaid, R., Mesbah, H., & Chikh, N. (2010). FRP-confined concrete cylinders: Axial compression experiments and strength model. Journal of Reinforced Plastics and Composites, 29(16), 2469-2488. https://doi.org/10.1177/0731684409355199
  11. Bisby, L. A., Chen, J. F., Li, S. Q., Stratford, T. J., Cueva, N., & Crossling, K. (2011). Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps. Engineering Structures, 33(12), 3381-3391. https://doi.org/10.1016/j.engstruct.2011.07.002
  12. Bisby, L. A., Dent, A. J. S., & Green, M. F. (2005). Comparison of confinement models for fiber-reinforced polymer-wrapped concrete. ACI Structural Journal, 102(1), 62-72.
  13. Campione, G. (2012). Load carrying capacity of RC compressed columns strengthened with steel angles and strips. Engineering Structures, 40, 457-465. https://doi.org/10.1016/j.engstruct.2012.03.006
  14. CAN, CSA-S806-12. (2012). Design and construction of building structures with fibre-reinforced polymers. Mississauga, ON: Canadian Standards Association.
  15. Carey, S. A., & Harries, K. A. (2005). Axial behavior and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber reinforced polymer jackets. ACI Structural Journal, 102(4), 596-604.
  16. Chaallal, O., Hassan, M., & LeBlanc, M. (2006). Circular columns confined with FRP: Experimental versus predictions of models and guidelines. ASCE Journal of Composites for Construction, 10(1), 4-12. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:1(4)
  17. Chan, Y., Peng, G., & Anson, M. (1999). Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cement & Concrete Composites, 21(1), 23-27. https://doi.org/10.1016/S0958-9465(98)00034-1
  18. Chastre, C., & Silva, M. (2010). Monotonic axial behavior and modelling of RC circular columns confined with CFRP. Engineering Structures, 32(8), 2268-2277. https://doi.org/10.1016/j.engstruct.2010.04.001
  19. Chen, Y. H., Chang, Y. F., Yao, G. C., & Sheu, M. S. (2009). Experimental research on post-fire behaviour of reinforced concrete columns. Fire Safety Journal, 44(5), 741-748. https://doi.org/10.1016/j.firesaf.2009.02.004
  20. CNR. (2013). CNR-DT 200 R1/2013: Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. Rome: Italian Research Council CNR Advisory Committee on Technical Recommendations for Construction.
  21. Cui,C.,&Sheikh, S. (2010). Analyticalmodel for circular normaland high-strength concrete columns confined withFRP. ASCE Journal of Composites for Construction, 14(5), 562-572. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000115
  22. Dai, J., Bai, Y., & Teng, J. (2011). Behavior and modeling of concrete confined with FRP composites of large deformability. ASCE Journal of Composites for Construction, 15(6), 963-973. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000230
  23. De Lorenzis, L., & Tepfers, R. (2003). Comparative study of models on confinement of concrete cylinders with fiberreinforced polymer composites. ASCE Journal of Composites for Construction, 7(3), 219-237. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(219)
  24. El-Shaer, M. (2014). Structural analysis for concrete columns subjected to temperature. Acta Technica Corviniensis-Bulletin of Engineering. Tome VII, Fascicule 2 (April-June) ISSN: 2067-3809.
  25. Fahmy, M.,&Wu, Z. (2010). Evaluating and proposing models of circular concrete columns confined with different FRP composites. Composites Part B Engineering, 41(3), 199-213.
  26. Fib. (2001). Externally bonded FRP reinforcement for RC structures. Bulletin No. 14, Technical Report, Federation internationale du Beton, Lausanne, Switzerland.
  27. Georgali, B., & Tsakiridis, P. E. (2005). Microstructure of firedamaged concrete. A case study. Cement & Concrete Composites, 27(2), 255-259. https://doi.org/10.1016/j.cemconcomp.2004.02.022
  28. Hager, I. (2014). Colour change in heated concrete. Fire Technology, 50(4), 945-958. https://doi.org/10.1007/s10694-012-0320-7
  29. Harajli, M. H. (2006). Axial stress-strain relationship for FRP confined circular and rectangular concrete columns. Cement & Concrete Composites, 28(10), 938-948. https://doi.org/10.1016/j.cemconcomp.2006.07.005
  30. Harries, K. A., & Kharel, G. (2002). Behavior and modeling of concrete subject to variable confining pressure. ACI Materials Journal, 99(2), 180-189.
  31. Hertz, K. D. (2003). Limits of spalling of fire-exposed concrete. Fire Safety Journal, 38(2), 103-116. https://doi.org/10.1016/S0379-7112(02)00051-6
  32. Husem, M. (2006). The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Safety Journal, 41(2), 155-163. https://doi.org/10.1016/j.firesaf.2005.12.002
  33. Jau, W. C., & Huang, K. L. (2008). A study of reinforced concrete corner columns after fire. Cement & Concrete Composites, 30(7), 622-638. https://doi.org/10.1016/j.cemconcomp.2007.09.009
  34. Jiang, T., & Teng, J. G. (2007). Analysis-oriented stress-strain models for FRP-confined concrete. Engineering Structures, 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010
  35. Lam, L., & Teng, J. G. (2003). Design-oriented stress-strain model for FRP-confined concrete. Construction and Building Materials, 17(6-7), 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X
  36. Lam, L., & Teng, J. G. (2004). Ultimate condition of fiber reinforced polymer-confined concrete. ASCE Journal of Composites for Construction, 8(6), 539-548. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539)
  37. Lee, C., & Hegemier, G. (2009). Model of FRP-confined concrete cylinders in axial compression. ASCE Journal of Composites for Construction, 13(5), 442-454. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000029
  38. Liang, M., Wu, Z. M., Ueda, T., Zheng, J. J., & Akogbe, R. (2012). Experiment and modeling on axial behavior of carbon fiber reinforced polymer confined concrete cylinders with different sizes. Journal of Reinforced Plastics and Composites, 31(6), 389-403. https://doi.org/10.1177/0731684412439347
  39. Lim, J. C., & Ozbakkaloglu, T. (2014a). Confinement model for FRP-confined high-strength concrete. ASCE Journal of Composites for Construction, 18(4), 1-19.
  40. Lim, J. C., & Ozbakkaloglu, T. (2014b). Design model for FRPconfined normal and high-strength concrete square and rectangular columns. Magazine of Concrete Research, 66(20), 1020-1035. https://doi.org/10.1680/macr.14.00059
  41. Lim, J. C., & Ozbakkaloglu, T. (2015a). Unified stress-strain model for FRP and actively confined normal-strength and high-strength concrete. ASCE Journal of Composites for Construction, 19(4), 04014072-1-04014072-14. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000536
  42. Lim, J. C., & Ozbakkaloglu, T. (2015b). Hoop strains in FRPconfined concrete columns: Experimental observations. Materials and Structures, 48(9), 2839-2854. https://doi.org/10.1617/s11527-014-0358-8
  43. Lin, C. H., Chen, S. T., & Yang, C. A. (1995). Repair of firedamaged reinforced concrete columns. ACI Structural Journal, 92(4), 406-411.
  44. Lin, G., Yu, T., & Teng, J. (2016). Design-oriented stress-strain model for concrete under combined FRP-steel confinement. ASCE Journal of Composites for Construction, 20(4), 04015084-1-04015084-11. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000651
  45. Luo, X., Sun, W., & Chan, S. (2000). Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete. Cement and Concrete Research, 30(3), 379-383. https://doi.org/10.1016/S0008-8846(99)00264-1
  46. Nassif, A. Y., Burley, E., & Rigden, S. (1995). A new quantitative method of assessing fire damage to concrete structures. Magazine of Concrete Research, 47(172), 271-278. https://doi.org/10.1680/macr.1995.47.172.271
  47. Netinger, I., Kesegic, I., & Guljas, I. (2011). The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates. Fire Safety Journal, 46(7), 425-430. https://doi.org/10.1016/j.firesaf.2011.07.002
  48. Neves, I., Rodrigues, J., & Loureiro, A. (1996). Mechanical properties of reinforcing and prestressing steels after heating. Journal of Materials in Civil Engineering, 8(4), 189-194. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:4(189)
  49. Ozbakkaloglu, T., & Lim, J. C. (2013). Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model. Composites Part B Engineering, 55, 607-634. https://doi.org/10.1016/j.compositesb.2013.07.025
  50. Ozbakkaloglu, T., Lim, J. C., & Vincent, T. (2013). FRP-confined concrete in circular sections: Review and assessment of stress-strain models. Engineering Structures, 49, 1068-1088. https://doi.org/10.1016/j.engstruct.2012.06.010
  51. Pellegrino, C., & Modena, C. (2010). Analytical model for FRP confinement of concrete columns with and without internal steel reinforcement. ASCE Journal of Composites for Construction, 14(6), 693-705. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000127
  52. Pham, T. M., & Hadi, M. N. S. (2014). Confinement model for FRP confined normal- and high-strength concrete circular columns. Construction and Building Materials, 69, 83-90. https://doi.org/10.1016/j.conbuildmat.2014.06.036
  53. Ramirez, J. L., Barcena, J. M., Urreta, J. I., & Sanchez, J. A. (1997). Efficiency of short steel jackets for strengthening square section concrete columns. Construction and Building Materials, 11(5-6), 345-352. https://doi.org/10.1016/S0950-0618(97)00056-1
  54. Rocca, S., Galati, N., & Nanni, A. (2008). Review of design guidelines for FRP confinement of reinforced concrete columns of noncircular cross sections. ASCE Journal of Composites for Construction, 12(1), 80-92. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:1(80)
  55. Roy, A., Sharma, U., & Bhargava, P. (2014). Strengthening of heat damaged reinforced concrete short columns. Journal of Structural Fire Engineering, 5(4), 381-398. https://doi.org/10.1260/2040-2317.5.4.381
  56. Roy, A., Sharma, U., & Bhargava, P. (2016). Confinement strengthening of heat-damaged reinforced concrete columns. Magazine of Concrete Research, 68(6), 291-304. https://doi.org/10.1680/jmacr.15.00078
  57. Saenz, N., & Pantelides, C. (2007). Strain-based confinement model for FRP confined concrete. Journal of Structural Engineering, 133(6), 825-833. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(825)
  58. Shahawy, M., Mirmiran, A., & Beitelman, T. (2000). Tests and modeling of carbon-wrapped concrete columns. Composites Part B Engineering, 31, 471-480. https://doi.org/10.1016/S1359-8368(00)00021-4
  59. Tahir, M. F., Yaqub, M., Bukhari, I., Tufail, R. F., & Tahir, A. (2013). Effect of carbon fiber reinforced polymer confinement on the fire damaged and un-heated reinforced concrete square columns. Life Science Journal, 10(12s), 791-799.
  60. Teng, J. G., Huang, Y. L., Lam, L., & Ye, L. (2007). Theoretical model for fiber reinforced polymer-confined concrete. ASCE Journal of Composites for Construction, 11(2), 201-210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)
  61. Teng, J. G., Jiang, T., Lam, L., & Luo, Y. Z. (2009). Refinement of a design-oriented stress-strain model for FRP-confined concrete. ASCE Journal of Composites for Construction, 13(4), 269-278. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012
  62. Teng, J. G., & Lam, L. (2004). Behavior and modeling of fiberreinforced polymer-confined concrete. Journal of Structural Engineering, 130(11), 1713-1723. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1713)
  63. Tolentino, E., Lameiras, F. S., Gomes, A. M., Rigo da Silva, C. A., & Vasconcelos, W. L. (2002). Effects of high temperature on the residual performance of Portland cement concretes. Materials Research, 5(3), 301-307. https://doi.org/10.1590/S1516-14392002000300014
  64. TR 55. (2012). Design guidance for strengthening concrete structures using fibre composite materials (3rd ed.) Technical Report No. 55, Concrete Society, Crowthorne, UK.
  65. Wei, Y. Y., & Wu, Y. F. (2012). Unified stress-strain model of concrete for FRP-confined columns. Construction and Building Materials, 26(1), 381-392. https://doi.org/10.1016/j.conbuildmat.2011.06.037
  66. Wu, Y. F., & Jiang, J. F. (2013). Effective strain of FRP for confined circular concrete columns. Composite Structures, 95, 479-491. https://doi.org/10.1016/j.compstruct.2012.08.021
  67. Wu, Y. F., & Wang, L. M. (2009). Unified strength model for square and circular concrete columns confined by external jacket. ASCE Journal of Structural Engineering, 135(3), 253-261. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(253)
  68. Xiao, Y., & Wu, H. (2000). Compressive behavior of concrete confined by carbon fiber composite jackets. ASCE Journal of Materials in Civil Engineering, 12(2), 139-146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139)
  69. Xiong, G. J., Wu, X. Y., Li, F. F., & Yan, Z. (2011). Load carrying capacity and ductility of circular concrete columns confined by ferrocement including steel bars. Construction and Building Materials, 25(5), 2263-2268. https://doi.org/10.1016/j.conbuildmat.2010.11.014
  70. Yaqub, M., & Bailey, C. G. (2011a). Repair of fire damaged circular reinforced concrete columns with FRP composites. Construction and Building Materials, 25(1), 359-370. https://doi.org/10.1016/j.conbuildmat.2010.06.017
  71. Yaqub, M., & Bailey, C. G. (2011b). Cross sectional shape effects on the performance of post-heated reinforced concrete columns wrapped with FRP composites. Composite Structures, 93(3), 1103-1117. https://doi.org/10.1016/j.compstruct.2010.09.012
  72. Yaqub, M., & Bailey, C. G. (2012). Seismic performance of shear critical post-heated reinforced concrete square columns wrapped with FRP composites. Construction and Building Materials, 34, 457-469. https://doi.org/10.1016/j.conbuildmat.2012.02.076
  73. Yaqub, M., Bailey, C. G., & Nedwell, P. (2011). Axial capacity of post-heated square columns wrapped with FRP composites. Cement & Concrete Composites, 33(6), 694-701. https://doi.org/10.1016/j.cemconcomp.2011.03.011
  74. Yaqub, M., Bailey, C. G., Nedwell, P., Khan, Q. U. Z., & Javed, I. (2013). Strength and stiffness of post-heated columns repaired with ferrocement and fibre reinforced polymer jackets. Composites Part B Engineering, 44(1), 200-211. https://doi.org/10.1016/j.compositesb.2012.05.041
  75. Yaqub, M., & Ghani, U. (2013). Assessment of residual strength based on estimated temperature of post-heated RC columns. Mehran University Research Journal of Engineering and Technology, 32(1), 55-70.
  76. Youssef, M. N., Feng, M. Q., & Mosallam, A. S. (2007). Stressstrain model for concrete confined by FRP composites. Composites Part B Engineering, 38(5-6), 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020
  77. Zhang, B., Bicanic, N., Pearce, C. J., & Balabanic, G. (2000). Assessment of toughness of concrete subject to elevated temperatures from a complete load-displacement curve-Part 2: Experimental investigations. ACI Materials Journal, 97(5), 556-566.

Cited by

  1. Evaluation of Fire-Damaged Concrete: An Experimental Analysis based on Destructive and Nondestructive Methods vol.11, pp.3, 2017, https://doi.org/10.1007/s40069-017-0211-x
  2. Assessment of probabilistic seismic performance of RC columns jacketed by FRP winding wires using analytical models vol.171, pp.None, 2017, https://doi.org/10.1016/j.engstruct.2018.05.098
  3. Performance Evaluation of CFRP Reinforced Concrete Members Utilizing Fuzzy Technique vol.12, pp.1, 2017, https://doi.org/10.1186/s40069-018-0313-0
  4. Effect of Cyclic Damage on the Performance of RC Square Columns Strengthened Using Hybrid FRP Composites under Axial Compression vol.7, pp.10, 2019, https://doi.org/10.3390/fib7100090
  5. The Structural Impact of Confinement in the Rehabilitation of Reinforced Concrete Beams vol.54, pp.5, 2019, https://doi.org/10.35741/issn.0258-2724.54.5.9
  6. Ultimate strain models derived using a Digital Image Correlation (DIC) system for preloaded RC columns subjected to heating and cooling and confined with CFRP sheets vol.41, pp.None, 2017, https://doi.org/10.1016/j.jobe.2021.102306
  7. Experimental and numerical study of strengthening and repairing heat-damaged RC circular column using hybrid system of CFRP vol.15, pp.None, 2017, https://doi.org/10.1016/j.cscm.2021.e00742
  8. Repair of post-heated short rectangular reinforced concrete columns with FRP jackets vol.34, pp.None, 2017, https://doi.org/10.1016/j.istruc.2021.10.038
  9. Post-fire Repair of Concrete Structural Members: A Review on Fire Conditions and Recovered Performance vol.10, pp.4, 2017, https://doi.org/10.21022/ijhrb.2021.10.4.323