• 제목/요약/키워드: fiber reinforced polymers

Search Result 162, Processing Time 0.031 seconds

Prediction of Time-Dependant Strain of Reinforced Concrete Beams Externally Bonded with FRP (FRP가 외부 부착된 철근콘크리트보의 시간의존적 변형률 예측)

  • Kim, Sung-Hu;Han, Kyoung-Bong;Kim, Kwang-Soo;Kim, Jun-Won;Lee, In-Ju;Park, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.253-256
    • /
    • 2008
  • Although researches on the beams strengthened with Fiber reinforced Polymers (FRPs) have recently been conducted around the world, there are few researches on the beams with FRPs under a sustained load. This paper presents the behavior of the beams with Carbon Fiber Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) under a sustained load during 300 days. Strains of steel and FRP reinforcement were measured in order to investigate the behavior of the beams. Additionally, Adjusted Effective Modulus Method (AEMM) and Ghali and Farve's method were used to predict increase in the stress and strain caused by creep and shrinkage. Through the experiment, it was found that the beam with CFRP is more effective than the beam with GFRP in terms of flexural strengthening. Compared with analytical results, it was indicated that strains of tension steels were overestimated, whereas strains of compression steels were underestimated.

  • PDF

Effect of Compatibilizers on Mechanical Properties of Wood-Plastic Composites Using Styrene Polymers as Matrix Polymers (스티렌계 수지(樹脂)를 매트릭스로 사용한 목재 - 플라스틱 복합체(複合體)의 물성(物性)에 미치는 상용화제(相溶化劑)의 효과(效果))

  • Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.31-37
    • /
    • 1993
  • Composites of styrene polymers with woody fibers were prepared, and the effect of compatibilizers on their mechanical properties was evaluated. To improve the compatibility of wood fibers and the matrix polymers, styrene-maleic anhydride copolymer(SMA) and maleic anhydride-modified polymers were used as compatibilizers. As results, maleic anhydride-modified polystyrene and SMA were proved to improve the tensile strength of the molded composites, and also were evaluated as good compatibilizers for the wood fiber polystyrene composite. Cellulosic fiber (dissolving pulp) provided better reinforcement than lignocellulosic fiber(thermomechanical pulp). On the contrary in the case of the composite of wood fiber and acrylonitrile-butadiene styrene copolymer(ABS), SMA and maleic anhydride-modified acrylonitrile-butadiene-styrene copolymer(MABS) did not act as compatibilizers. However, MABS was evaluated as a good polymer matrix to make wood fiber reinforced composite. The tensile properties of the composites of wood fiber and MABS were superior than those of wood fiber-ABS composites.

  • PDF

Investigation of interface response of reinforced concrete columns retrofitted with composites

  • Achillopoulou, Dimitra V.;Kiziridou, Alexandra N.;Papachatzakis, Georgios A.;Karabinis, Athanasios I.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1337-1358
    • /
    • 2016
  • The current study focuses on the assessment and interface response of reinforced concrete elements with composite materials (carbon fiber reinforced polymers-CFRPs, glass fiber reinforced polymers-GFRPs, textile reinforced mortars-TRM's, near surface mounted bars-NSMs). A description of the transfer mechanisms from concrete elements to the strengthening materials is conducted through analytical models based on failure modes: plate end interfacial debonding and intermediate flexural crack induced interfacial debonding. A database of 55 in total reinforced concrete columns (scale 1:1) is assembled containing elements rehabilitated with various techniques (29 wrapped with CFRP's, 5 wrapped with GFRP's, 4 containing NSM and 4 strengthened with TRM). The failure modes are discussed together with the performance level of each technique as well as the efficiency level in terms of ductility and bearing/ bending capacity. The analytical models' results are in acceptable agreement with the experimental data and can predict the failure modes. Despite the heterogeneity of the elements contained in the aforementioned database the results are of high interest and point out the need to incorporate the analytical expressions in design codes in order to predict the failure mechanisms and the limit states of bearing capacities of each technique.

Analysis of steel-GFRP reinforced concrete circular columns

  • Shraideh, M.S.;Aboutaha, R.S.
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.351-364
    • /
    • 2013
  • This paper presents results from an analytical investigation of the behavior of steel reinforced concrete circular column sections with additional Glass Fiber Reinforced Polymers (GFRP) bars. The primary application of this composite section is to relocate the plastic hinge region from the column-footing joint where repair is difficult and expensive. Mainly, the study focuses on the development of the full nominal moment-axial load (M-P) interaction diagrams for hybrid concrete sections, reinforced with steel bars as primary reinforcement, and GFRP as auxiliary control bars. A large parametric study of circular steel reinforced concrete members were undertaken using a purpose-built MATLAB(c) code. The parameters considered were amount, location, dimensions and mechanical properties of steel, GFRP and concrete. The results indicate that the plastic hinge was indeed shifted to a less critical and congested region, thus facilitating cost-effective repair. Moreover, the reinforced concrete steel-GFRP section exhibited high strength and good ductility.

Assessment of DVC measurement uncertainty on GFRPs with various fiber architectures

  • Bartulovic, Ante;Tomicevic, Zvonimir;Bubalo, Ante;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.15-32
    • /
    • 2022
  • The comprehensive understanding of the fiber reinforced polymer behavior requires the use of advanced non-destructive testing methods due to its heterogeneous microstructure and anisotropic mechanical proprieties. In addition, the material response under load is strongly associated with manufacturing defects (e.g., voids, inclusions, fiber misalignment, debonds, improper cure and delamination). Such imperfections and microstructures induce various damage mechanisms arising at different scales before macrocracks are formed. The origin of damage phenomena can only be fully understood with the access to underlying microstructural features. This makes X-ray Computed Tomography an appropriate imaging tool to capture changes in the bulk of fibrous materials. Moreover, Digital Volume Correlation (DVC) can be used to measure kinematic fields induced by various loading histories. The correlation technique relies on image contrast induced by microstructures. Fibrous composites can be reinforced by different fiber architectures that may lead to poor natural contrast. Hence, a priori analyses need to be performed to assess the corresponding DVC measurement uncertainties. This study aimed to evaluate measurement resolutions of global and regularized DVC for glass fiber reinforced polymers with different fiber architectures. The measurement uncertainties were evaluated with respect to element size and regularization lengths. Even though FE-based DVC could not reach the recommended displacement uncertainty with low spatial resolution, regularized DVC enabled for the use of fine meshes when applying appropriate regularization.

A Study on the Warpage of Glass Fiber Reinforced Plastics for Part Design and Operation Condition: Part 2. Crystalline Plastics (유리섬유로 보강된 수지에서 제품설계 및 성형조건에 따른 휨의 연구: Part 2. 결정성 수지)

  • Lee, Min;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • Injection molding process is a popular polymer processing involving plasticizing and enforcing the material flow into the mold. A polymer material shrinks according to temperature variations during the shaping process, and subsequently molding shrinkage developed. Developed deflections or warpages after molding process in part are caused by residual stress relaxation contained in the part. Adding inorganic materials or fibers such as glass and carbon to control shrinkage and enhance warpage resistance are common. In this study, warpages according to part design have been investigated through experiment. Warpages for molding conditions and mold designs such as gate locations were measured. Warpages along flow direction and perpendicular to the flow direction were also measured. Warpages near gate and far from gate were compared. Glass fiber reinforced crystalline polymers, PP and PA66 have been used in this experiment. Glass fiber reinforced crystalline polymers showed large warpage compared with glass reinforced amorphous polymers. Warpages in crystalline polymers were less influenced by molding conditions compared with amorphous polymers, however warpages of crystalline polymers significantly depend on part design.

Mechanical Properties of Carbon-Fiber Reinforced Polymer-Impregnated Cement Composites

  • Park, Seung-Bum;Yoon, Eui-Sik
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.65-77
    • /
    • 1999
  • A portland cement was reinforced by incorporating carbon fiber(CF), silica powder, and impregnating the pores with styrene monomers which were polymerized in situ. The effects of type, length, and volume loading of CF, mixing conditions, curing time and, curing conditions on mechanical behavior as well as freeze-thaw resistance and longer term stability of the carbon-fiber reinforced cement composites (CFRC) were investigated. The composite Paste exhibited a decrease in flow values linearly as the CF volume loadings increased. Tensile, compressive, and flexural strengths all generally increased as the CF loadings in the composite increased. Compressive strength decreased at CF loadings above approx. 3% in CFRC having no impregnated polymers due to the increase in porosity caused by the fibers. However, the polymer impregnation of CFRC improved all the strength values as compared with CFRC having no Polymer impregnation. Tensile stress-strain curves showed that polymer impregnation decreased the fracture energy of CFRC. Polymer impregnation clearly showed improvements in freeze-thaw resistance and drying shrinkage when compared with CFRC having no impregnated polymers.

  • PDF

Seismic response assessment of high-strength concrete frames strengthened with carbon fiber reinforced polymers

  • Rahmdel, Javad Mokari;Vahid-Vahdattalab, Farzin;Shafei, Erfan;Zirakian, Tadeh
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.735-744
    • /
    • 2021
  • In recent years, the use of new materials and technologies with the aim of developing high-performing and cost-effective structures has greatly increased. Application of high-strength concrete (HSC) has been found effective in reducing the dimensions of frame members; nonetheless, such reduction in dimensions of structural elements in the most cases may result in the lack of accountability in the tolerable drift capacity. On this basis, strengthening of frame members using fiber reinforced polymers (FRPs) may be deemed as an appropriate remedy to address this issue, which albeit requires comprehensive and systematic investigations. In this paper, the performance of properly-designed, two-dimensional frames made of high-strength concrete and strengthened with Carbon Fiber Reinforced Polymers (CFRPs) is investigated through detailed numerical simulation. To this end, nonlinear dynamic time history analyses have been performed using the Seismosoft software through application of five scaled earthquake ground motion records. Unstrengthened (bare) and strengthened frames have been analyzed under seismic loading for performance assessment and comparison purposes. The results and findings of this study show that use of CFRP can be quite effective in seismic response improvement of high-strength-concrete structures.

Behavior of FRP strengthened RC brick in-filled frames subjected to cyclic loading

  • Singh, Balvir;Chidambaram, R. Siva;Sharma, Shruti;Kwatra, Naveen
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.557-566
    • /
    • 2017
  • Fiber reinforced polymer (FRP) sheets are the most efficient structural materials in terms of strength to weight ratio and its application in strengthening and retrofitting of a structure or structural elements are inevitable. The performance enhancement of structural elements without increasing the cross sectional area and flexible nature are the major advantages of FRP in retrofitting/strengthening work. This research article presents a detailed study on the inelastic response of conventional and retrofitted Reinforced Concrete (RC) frames using Carbon Fibre Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) subjected to quasi-static loading. The hysteretic behaviour, stiffness degradation, energy dissipation and damage index are the parameters employed to analyse the efficacy of FRP strengthening of brick in-filled RC frames. Repair and retrofitting of brick infilled RC frame shows an improved load carrying and damage tolerance capacity than control frame.

Characterization of TLCP Reinforced Polyester Blend Fibers (열방성 액정고분자 강화 폴리에스터 블렌드 섬유의 특성)

  • Kim, Jun-Young;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.223-226
    • /
    • 2003
  • Due to the potential application to ultra-high strength fibers and excellent properties such as high mechanical properties, excellent thermal endurance and chemical stability, thermotropic liquid crystal polymers (TLCPS) are attractive in recent years [1, 2]. Furthermore, the melt blends of TLCPS and conventional thermoplastics have been extensively investigated because of their easy processing and high performance [3-6]. Since high performance polymers generally has high melt viscosity, introduction of the relatively low viscosity components may be one of the more effective techniques to improve processability through the decrement of melt viscosity in melt processing. (omitted)

  • PDF