DOI QR코드

DOI QR Code

시각장애인을 위한 딥러닝 기반 표지판 검출 및 인식

Deep Learning Based Sign Detection and Recognition for the Blind

  • 전태재 (연세대학교 전기전자공학과) ;
  • 이상윤 (연세대학교 전기전자공학과)
  • Jeon, Taejae (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee, Sangyoun (School of Electrical and Electronic Engineering, Yonsei University)
  • 투고 : 2016.11.21
  • 심사 : 2017.01.24
  • 발행 : 2017.02.25

초록

본 논문은 딥러닝 알고리즘을 기반으로 하여 시각장애인을 위한 표지판을 검출하고 인식하는 시스템을 제안한다. 제안된 시스템은 크게 표지판 검출 단계와 표지판 인식 단계로 나눠지는데 표지판 검출 단계에서는 영상에서 응집 채널 특징을 추출한 뒤 아다부스트 분류기를 적용하여 표지판 관심영역을 검출하였고, 표지판 인식 단계에서는 검출한 표지판 관심영역들에 합성곱 신경망을 적용하여 어떤 표지판인지 인식하였다. 본 논문에서는 미검출된 표지판의 개수가 최대한 감소하도록 아다부스트 분류기를 설계하였고, 딥러닝 알고리즘을 사용하여 인식 정확도를 높임으로써 검출 단계에서 발생한 양성 오류들을 제거시켰다. 실험 결과, 제안된 방법의 양성 오류 개수가 다른 방법들의 양성 오류 개수보다 효과적으로 감소했음을 확인하였다.

This paper proposes a deep learning algorithm based sign detection and recognition system for the blind. The proposed system is composed of sign detection stage and sign recognition stage. In the sign detection stage, aggregated channel features are extracted and AdaBoost classifier is applied to detect regions of interest of the sign. In the sign recognition stage, convolutional neural network is applied to recognize the regions of interest of the sign. In this paper, the AdaBoost classifier is designed to decrease the number of undetected signs, and deep learning algorithm is used to increase recognition accuracy and which leads to removing false positives which occur in the sign detection stage. Based on our experiments, proposed method efficiently decreases the number of false positives compared with other methods.

키워드

참고문헌

  1. C. Yoon, S. Jang and M. Park, "Real-time road sign detection using vertical plane and adaboost," Journal of the Institute of Electronics Engineers of Korea SC, vol. 46, no.5, pp. 29-37, Sep. 2009.
  2. J. Kim and J. Park, "Traffic sign detection using the HSI eigen-color model and invariant moments," Journal of the Institute of Electronics Engineers of Korea CI, vol. 47, no.1, pp. 41-51, Jan. 2010.
  3. B. Tian, R. Chen, Y. Yao and N. Li, "Robust traffic sign detection in complex road environments," Vehicular Electronics and Safety (ICVES), 2016 IEEE International Conference on. IEEE, pp. 1-5, Jul. 2016.
  4. Y. Bengio, A. Courville and P. Vincent, "Representation learning: A review and new perspectives," IEEE transactions on pattern analysis and machine intelligence, vol.35, no.8, pp. 1798-1828, 2013. https://doi.org/10.1109/TPAMI.2013.50
  5. Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li and S. Hu, "Traffic-Sign Detection and Classification in the Wild," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2110-2118, 2016.
  6. M. Peemen, B. Mesman and H. Corporaal, "Speed sign detection and recognition by convolutional neural networks," 8th International Automotive Congress, pp. 162-170, 2011.
  7. P. Dollár, R. Appel, S. Belongie and P. Perona, "Fast feature pyramids for object detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, no.8, pp. 1532-1545, 2014. https://doi.org/10.1109/TPAMI.2014.2300479
  8. P. Viola and M. Jones, "Robust Real Time Object Detection," IEEE ICCV Workshop Statistical and Computational Theories of Vision, Jul. 2001.
  9. D. CireşAn, U. Meier, J. Masci and J. Schmidhuber, "Multi-column deep neural network for traffic sign classification," Neural Networks, vol.32, pp. 333-338, 2012. https://doi.org/10.1016/j.neunet.2012.02.023
  10. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick and T. Darrell, "Caffe: Convolutional architecture for fast feature embedding," Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp. 675-678, Nov. 2014.
  11. R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580-587, 2014.