DOI QR코드

DOI QR Code

The Effect of Glass Fabric Separator Elongation on Electric Property in Structural Battery

유리섬유 분리막 인장으로 인한 구조전지의 전기적 물성 변화

  • Received : 2016.11.30
  • Accepted : 2017.01.11
  • Published : 2017.02.28

Abstract

Structural battery has been researched extensively to combine the functions of the battery and structure without gravimetric or volumetric increments compared to their individual components. The main idea is to employ carbon fabric as the reinforcement and electrode, glass fabric as the separator, and solid-state electrolyte which can transfer load. However, state-of-the-art solid-state electrolytes do not have sufficient load carrying functionality and exhibiting appropriate ion conductivity simultaneously. Therefore, in this research, a system which has both battery and load carrying capabilities using glass fabric separator and liquid electrolyte was devised and tested to investigate the potential and feasibility of this structural battery system and observe electric properties. It was observed that elongating separator decreased electrical behavior stability. A possible cause of this phenomenon was the elongated glass fabric separator inadequately preventing the penetration of small particles of the cathode material into the anode. This problem was verified additionally by using a commercial separator. The characteristic of the glass fabric and the interface between the electrode and glass fabric needed to be further studied for the realization of such a load carrying structural battery system.

질량 및 부피 증가없이 전지와 구조물기능을 복합재에 결합시키는 구조전지 연구가 광범위하게 진행되고 있다. 탄소섬유 및 유리섬유를 하중지지 및 음극, 분리막 용도로 사용하고, 하중전달이 가능한 고체전해질을 모재로 쓰는 것이 현재 아이디어 이지만, 고체전해질이 두 성능을 충분히 만족시키지 못하는 수준이라 구조전지를 구현하지 못하고 있는 실정이다. 그래서, 본 연구는 유리섬유 분리막 및 액체전해질을 사용하여 하중지지 및 전지의 기능을 동시에 수행하는 실험을 구성하여 액체전해액을 사용한 구조전지의 가능성 및 전기적 물성 변화를 관찰하였다. 인장된 분리막은 안정성을 떨어트리는 영향을 미치는데, 이는 양극의 미세입자들이 늘어난 유리섬유의 틈새로 침투하는 것을 분리막이 막지 못하기 때문이라 예상하였고, 상용 분리막을 추가로 사용 하여 그 예상되는 원인을 확인해 보았다. 그리고, 이러한 구조전지 시스템을 구현하기 위해서는 유리섬유 특성의 연구와 전극과 분리막의 계면에 대한 연구가 필요하다.

Keywords

References

  1. Gibson, R.F., "A Review of Recent Research on Mechanics of Multifunctional Composite Materials and Structures," Composite Structures, Vol. 92, 2010, pp. 2793-2810. https://doi.org/10.1016/j.compstruct.2010.05.003
  2. Pereira, T., Guo, Z., Nieh, S., Arias, J., and Thomas Hahn, H., "Embedding Thin-film Lithium Energy Cells in Structural Composites", Composites Science and Technology, Vol. 68, 2008, pp. 1935-1941. https://doi.org/10.1016/j.compscitech.2008.02.019
  3. Gasco, F., and Feraboli, P., "Manufacturability of Composite Laminates with Integrated Thin Film Li-ion Batteries", Journal of Composite Materials, Vol. 48, No. 8, 2014, pp. 899-910. https://doi.org/10.1177/0021998313480195
  4. Thomas, J.P., Qidwai, S.M., Oogue lll W.R., and Pham, G.T, "Multifunctional Structure-battery Composites for Marine Systems", Journal of Composite Materials, Vol. 47, No. 1, 2013, pp. 5-26. https://doi.org/10.1177/0021998312460262
  5. Thomas, J.P., and Qidwai, M.A., "Mechanical Design and Performance of Composite Multifunctional Materials", Acta Mater, Vol. 52, 2004, pp. 2155-2164. https://doi.org/10.1016/j.actamat.2004.01.007
  6. Asp, L.E., and Greenhalgh, E.S., "Structural Power Composite", Composites Science and Technology, Vol. 101, 2014, pp. 41-61. https://doi.org/10.1016/j.compscitech.2014.06.020
  7. Yoshio, M., Brodd, R.J., and Kozawa, A., Lithium-ion Batteries: Science and Technologies, Springer, 2009.
  8. Jacuqes, E., Kjell, M.H., Zenkert, D., Lindbergh, G., and Behm, M., "Expansion of Carbon Fibres Induced by Lithium Intercalation for Structural Electrode Applications", Carbon, Vol. 59, 2013, pp. 246-254. https://doi.org/10.1016/j.carbon.2013.03.015
  9. Jacques, E., Kjell, M.H., Zenkert, D., and Lindbergh, G., "The Effect of Lithium-intercalation of the Mechanical Properties of Carbon Fibres", Carbon, Vol. 68, 2014, pp. 725-733. https://doi.org/10.1016/j.carbon.2013.11.056
  10. Jacques, E., Kjell, M.H., Zenkert, D., Lindbergh, G., and Behm, M., "Impact of Mechanical Loading on the Electrochemical Behavior of Carbon Fibers for Use in Energy Storage Composite Materials", 18th International Conference on Composite Materials, 2011.
  11. Kjell, M.H., Jacques, E., Zenkert, D., Behm, M., and Lindbergh, G., "PAN-based Carbon fiber Negative Electrodes for Structural Lithium-ion Batteries", Journal of the Electrochemical Society, Vol. 158, No. 12, 2011, pp. A1455-A1460. https://doi.org/10.1149/2.053112jes
  12. Wienrich, M., Kalinaka, G., Greenhalgh, E.S., Carreyette, S., Bistritz, M., Shirshova, N., Houlle, M., Asp, L., Bismarck, A., and Fontan, Q.P.V., "Impact of Ionic Liquid on the Mechanical Performance of Matrix Polymer for Fibre Reinforced Materials for Energy Storage", ECCM15-15th European Conference on composite Materials, Venice, Italy, 24-28 June 2012.
  13. Kwon, S.J., Choi, U.H., Jung, B.M., and Lee, S.B., "Effect of Nanoparticles on Ionic Conductivity and Modulus in Epoxybased Multifunctional Structural Electrolytes Containing Ionic Liquid", Conference of The Korean Society for Composite Materials, May, 2016.
  14. Snyder, J.F., Carter, R.H., and Wetzel, E.D., "Electrochemical and Mechanical Behavior in Mechanically Robust Solid Polymer Electrolytes for use in Multifunctional Structural Batteries", Chem Mater. Vol. 19, 2007, pp. 3793-3801. https://doi.org/10.1021/cm070213o
  15. Bismarck, A., Carreyette, S., Fontana, Q.P.V., Greenhalgh, E.S., Jacobsson, P., Johanasson, P., Marczewski, M.J., Kalinka, G., Kucemak, A., Shaffer, M.S., Shirshova, N., Steinke, J.H.G., and Wienrich, M., "Multifunctional Epoxy Resin foR Structural Supercapacitors", ECCM15-15th European Conference of Composite Materials, Venice, Italy, 24-28 June 2012.
  16. Shirshova, N., Bismarck, A., Carreyette, S., Fontana, Q.P.V., Greenhalgh, E.S., Jacobsson, P., Johansson, P., Marczewski, M.J., Kalinka, G., Kucernak, A.R.J., Scheers, J., Shaffer, M.S.P., Steinke, J.H.G., and Wienrich, M., "Structural Supercapacitor Electrolytes Based on Bicontinuous Ionic Liquid-epoxy Resin Systems", Journal of Materials Chemistry A, Vol. 1, 2013, 15300. https://doi.org/10.1039/c3ta13163g
  17. Chen, J., Sun, T., Qi, Y., and Li, X., "A Coupled Penetration-Tension Method for Evaluation the Reliability of Battery Separators", ECS Electrochemistry Letters, Vol. 3, No. 6, 2014, pp. A41-A44. https://doi.org/10.1149/2.012405eel
  18. Peabody, C., and Arnold, C.B., "The Role of Mechanically Induced Separator Creep in Lithim-ion Battery Capacity Fade", Journal of Power Sources, Vol. 196, 2011, pp. 8147-8153. https://doi.org/10.1016/j.jpowsour.2011.05.023
  19. Cannarella, J., and Arnold, C.B., "Stress Evolution and Capacity Fade in Constrained Lithium-ion Pouch Cells", Journal of Power Sources, Vol. 245, 2014, pp. 745-751. https://doi.org/10.1016/j.jpowsour.2013.06.165
  20. ASTM D4964
  21. Park, J.G., Principles and Applications of Lithium Secondary Batteries, Hongrung Pub. Co., KOREA, 2016.
  22. Djian, D., Alloin, F., Martinet, S., Lignier, H., and Sanchez, J.Y., "Lithium-ion Batteries with High Charge Rate Capacity: Influence of the Porous Separator", Journal of Power Sources, Vol. 172, 2007, pp. 416-421. https://doi.org/10.1016/j.jpowsour.2007.07.018
  23. Huang, X., "Separator Technologies for Lithium-ion Batteries", Journal of Solid State Electrochem, Vol. 15, 2011, pp. 649-662. https://doi.org/10.1007/s10008-010-1264-9