References
- Choi, M. S. and Choi, D. Y., 2014, Building Energy Consumption Sampling Survey, Korea Energy Economics Institute, Vol. 14-29, pp. 7-10.
- Beak, Y. R., 2002, Thermal energy analysis program of building, Journal of Mechanical Science and Technology, Vol. 42, pp. 20-21.
- Cha, S. B., Kim, H. B., Oh, H. C., Yoon, J. H., and Kim, W. K., 2008, Multivariate Analysis, Baeksan Publishing.
- Yu, Y. B. and Yu, D. H., 2014, A Review of Fault Detection and Diagnosis Methodologies on Air-handling Units, Energy and Buildings, Vol. 82, pp. 550-562. https://doi.org/10.1016/j.enbuild.2014.06.042
- Woo, H.-J. and Leigh, S.-B., 2016, A Study on Classifying Building Energy Consumption Pattern using Actual Building Data, Journal of the Architectural Institute of Korea Planning & Design, Vol. 32, No. 5, pp. 143-151. https://doi.org/10.5659/JAIK_PD.2016.32.5.143
- Forina, M., Armanino, C., and Raggio, V., 2002, Clustering with dendrograms on interpretation variables, Analytica Chimica Acta, Vol. 454, pp. 13-19. https://doi.org/10.1016/S0003-2670(01)01517-3
- Jeong, S.-H., Kim, H.-Y., Lee, H.-N., and Leigh, S.-B., 2015, A Validation Study of Remote Energy Diagnosis Algorithm Performance through Actual Building Energy Data Analysis, Journal of the Architectural Institute of Korea Planning & Design, Vol. 31, No. 5, pp. 137-145. https://doi.org/10.5659/JAIK_PD.2015.31.5.137
- Kim, G.-S., Kim, Y.-M., Kim, J.-S., and Oh, S.-G., 2014, A Study on Data Quantification Simulation Model for Public Office Green Remodeling, Journal of the Architectural Institute of Korea Planning & Design, Vol. 30, No. 10, pp. 53-62. https://doi.org/10.5659/JAIK_PD.2014.30.10.53
- Lee, T.-K., Noh, K.-C., and Oh, M.-D., 2014, Study on Electric Power Consumption in University Building using Multiple Regression Analysis, The Society of Air-Conditioning And Refrigerating Engineers of Korea, Vol. 11, pp. 151-154.
- Jung, K.-T., Yoon, S.-M., Moon, H.-J., and Yeo, W.-H., 2012, A Study on Building Energy Consumption Pattern Analysis Using Data Mining, The International Journal of The Korea Institute of Ecological Architecture and Environment, Vol. 12, No. 2, pp. 77-82.
- Kong, D.-S., Kwak, Y.-H., and Huh, J.-H., 2012, Artificial Neural Network based Energy Demand Prediction for the Urban District Energy Planning, Journal of the Architectural Institute of Korea Planning & Design, Vol. 26, No. 2, pp. 221-230.
- Lee, J.-S. and Seong, S.-Y., 2016, An Investigation into Supply Characteristics and Spatial Clustering Pattern of Office Buildings in Seoul : Major Office Buildings between 2003 and 2012, Journal of Korea Planning Association, Vol. 51, No. 3, pp. 83-96. https://doi.org/10.17208/jkpa.2016.06.51.3.83
- Lovett, T., Lee, J. H., Gabe-Thomas, E., Natarajan, S., Brown, M., Padget, J., and Coley, D., 2016, Designing sensor sets for capturing energy events in buildings, Building and Environment Vol. 110, pp. 11-22. https://doi.org/10.1016/j.buildenv.2016.09.004
- Marsland, S., 2016, Machine Learning : An algorithm perspective, Oxford, Taylor and Francis Group, pp. 327-365.
- James, G., Witten, D., and Hastie, T., and Tibshirani, R., 2015, An introduction to Statistical Learning with application in R, Berlin, Springer, pp. 263-275.
- Han, J., Kamber, M., and Pei, J., 2012, Data Mining, New York, Elsvier, pp. 137-146.
- Shmueli, G., Petel, N. R., and Bruce, P. C., 2010, Data mining for business intelligence, New York, Wiley, pp. 91-97.
- Seo, M.-G., 2014, Practical Data Processing and Analysis Using R, Seoul, Gilbut, pp. 415-416.
- Ryu, C.-H., 2015, R Visualization, Seoul, Insight, pp. 2-7.