• 제목/요약/키워드: Multi-variable matrix

검색결과 34건 처리시간 0.029초

다변수 시스템에서 자코비안을 이용한 PID 제어기 학습법 (A Learning Method of PID Controller by Jacobian in Multi Variable System)

  • 임윤규;정병묵
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.112-119
    • /
    • 2003
  • Generally, PID controller is not suitable to control multi variable system because it is very difficult to tune the PID gains. However, this paper shows that it is not hard to tune the PID gains if we can find a Jacobian matrix of the system. The Jacobian matrix expresses the ratio of output variations according to input variations. It is possible to adjust the input values in order to reduce the output error using the Jacobian. When the colt function is composed of error related terms, the gradient approach can tune the PID gains to minimize the function. In simulation, a hydrofoil catamaran with two inputs and two outputs is applied as a multi variable system. We can easily get the multi variable PID controller by the proposed teaming method. When the controller is compared with LQR controller, the performance is as good as that of LQR controller with a modeling equation.

상대이득행렬을 이용한 뉴로 퍼지 제어기의 설계 (Design of Neuro-Fuzzy Controller using Relative Gain Matrix)

  • 서삼준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.157-157
    • /
    • 2000
  • In the fuzzy control for the multi-variable system, it is difficult to obtain the fuzzy rule. Therefore, the parallel structure of the independent single input-single output fuzzy controller using a pairing between the input and output variable is applied to the multi-variable system. The concept of relative gain matrix is used to obtain the input-output pairs. However, among the input/output variables which are not paired the interactive effects should be taken into account. these mutual coupling of variables affect the control performance. Therefore, for the control system with a strong coupling property, the control performance is sometimes lowered. In this paper, the effect of mutual coupling of variables is considered by tile introduction of a simple compensator. This compensator adjusts the degree of coupling between variables using a neural network. In this proposed neuro-fuzzy controller, the Neural network which is realized by back-propagation algorithm, adjusts the mutual coupling weight between variables.

  • PDF

슬라이딩 섹터를 갖는 다중 입출력 가변 구조 제어 시스템 (MIMO Variable Structure Control System with Sliding Sector)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.524-529
    • /
    • 2006
  • In this paper, we propose a method to design variable structure systems with sliding sector for multi-input multi-output systems with mismatched uncertainties in the state matrix. For the uncertain systems we define sliding sectors within which a norm of the state decreases with zero input despite of mismatched uncertainties. Using the notion of the sliding sector we give simple design algorithms of variable structure control laws that can reduce the chattering. Finally, we give a design example in order to show the effectiveness of our method.

Incremental Multi-classification by Least Squares Support Vector Machine

  • Oh, Kwang-Sik;Shim, Joo-Yong;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권4호
    • /
    • pp.965-974
    • /
    • 2003
  • In this paper we propose an incremental classification of multi-class data set by LS-SVM. By encoding the output variable in the training data set appropriately, we obtain a new specific output vectors for the training data sets. Then, online LS-SVM is applied on each newly encoded output vectors. Proposed method will enable the computation cost to be reduced and the training to be performed incrementally. With the incremental formulation of an inverse matrix, the current information and new input data are used for building another new inverse matrix for the estimation of the optimal bias and lagrange multipliers. Computational difficulties of large scale matrix inversion can be avoided. Performance of proposed method are shown via numerical studies and compared with artificial neural network.

  • PDF

연산 증폭기를 사용한 다중 챈넬능동휠타의 구현 (Realization of Multi-Channel Active Filters by Using Operational Amplifiers)

  • 김정덕
    • 전기의세계
    • /
    • 제24권4호
    • /
    • pp.80-82
    • /
    • 1975
  • This paper presents a synthesis procedure of multi-channel active filters, which realizes an arbitrary N*N matrix of real rational functions in the complex variable s as a voltage transfer matrix. The resultant network reveals a transformerless grounded active RC(2N+1)-terminal network. The active network is consisted of six 2N-port RC networks with 2N single-ended operational amplifiers.

  • PDF

비음수 행렬 분해와 K-means를 이용한 주제기반의 다중문서요약 (Topic-based Multi-document Summarization Using Non-negative Matrix Factorization and K-means)

  • 박선;이주홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권4호
    • /
    • pp.255-264
    • /
    • 2008
  • 본 논문은 K-means과 비음수 행렬 분해(NMF)를 이용하여 주제기반의 다중문서를 요약하는 새로운 방법을 제안하였다. 제안방법은 비음수 행렬 분해를 이용하여 가중치가 부여된 용어-문장 행렬을 희소(Sparse)한 비음수 의미특징 행렬과 비음수 변수 행렬로 분해함으로써 직관적으로 이해할 수 있는 형태의 의미적 특징을 추출할 수 있고, 주제와 의미특징간의 유사도에 가중치를 부여하여 유사도는 높으나 실제 의미 없는 문장이 추출되는 것을 막는다. 또한 K-means 군집을 이용하여 문장에 포함된 노이즈를 제거함으로써 문서의 의미가 요약에 편향되게 반영하는 것을 피할 수 있고, 추출된 문장에 부여된 순위순서대로 정렬하여 보여 줌으로써 응집성을 높인다. 실험 결과 제안방법이 다른 방법에 비하여 좋은 성능을 보인다.

A Class of Singular Quadratic Control Problem With Nonstandard Boundary Conditions

  • Lee, Sung J.
    • 호남수학학술지
    • /
    • 제8권1호
    • /
    • pp.21-49
    • /
    • 1986
  • A class of singular quadratic control problem is considered. The state is governed by a higher order system of ordinary linear differential equations and very general nonstandard boundary conditions. These conditions in many important cases reduce to standard boundary conditions and because of the conditions the usual controllability condition is not needed. In the special case where the coefficient matrix of the control variable in the cost functional is a time-independent singular matrix, the corresponding optimal control law as well as the optimal controller are computed. The method of investigation is based on the theory of least-squares solutions of multi-valued operator equations.

  • PDF

GENERALIZATION OF MULTI-VARIABLE MODIFIED HERMITE MATRIX POLYNOMIALS AND ITS APPLICATIONS

  • Singh, Virender;Khan, Mumtaz Ahmad;Khan, Abdul Hakim
    • 호남수학학술지
    • /
    • 제42권2호
    • /
    • pp.269-291
    • /
    • 2020
  • In this paper, we get acquainted to a new generalization of the modified Hermite matrix polynomials. An explicit representation and expansion of the Matrix exponential in a series of these matrix polynomials is obtained. Some important properties of Modified Hermite Matrix polynomials such as generating functions, recurrence relations which allow us a mathematical operations. Also we drive expansion formulae and some operational representations.

상대 이득 행렬을 이용한 뉴로-퍼지 제어기의 설계 (Design of Neuro-Fuzzy Controller using Relative Gain Matrix)

  • 서삼준;김동원;박귀태
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.24-29
    • /
    • 2005
  • 일반적으로 다변수 계통에 대한 퍼지 제어에서 퍼지 규칙을 얻기가 어려워 입출력 사이의 페어링을 이용한 독립적인 단일 입력 단일 출력의 병렬 구조를 이용한다. 그러나, 결합되지 않은 입출력 변수간의 상호작용으로 제어 성능에 나쁜 영향을 준다. 특히, 강한 결합 특성을 가진 계통의 경우 제어 성능을 아주 저하시킨다. 본 논문에서는 이러한 상호작용에 의한 영향을 보상해주기 위해 상대 이득 행렬을 이용한 신경 회로망을 도입하였다 제안한 뉴로 퍼지 제어기는 역전파 알고리즘으로 학습되며 강호작용에 대한 결합강도를 자동으로 조정하여준다. 제안한 뉴로 퍼지 제어기의 성능을 200MW급 보일러 계통에 대한 컴퓨터 모의실험을 통해 입증하였다.

자코비안을 이용한 LQR 제어기 학습법 (A Learning Method of LQR Controller Using Jacobian)

  • 임윤규;정병묵
    • 한국정밀공학회지
    • /
    • 제22권8호
    • /
    • pp.34-41
    • /
    • 2005
  • Generally, it is not easy to get a suitable controller for multi variable systems. If the modeling equation of the system can be found, it is possible to get LQR control as an optimal solution. This paper suggests an LQR learning method to design LQR controller without the modeling equation. The proposed algorithm uses the same cost function with error and input energy as LQR is used, and the LQR controller is trained to reduce the function. In this training process, the Jacobian matrix that informs the converging direction of the controller Is used. Jacobian means the relationship of output variations for input variations and can be approximately found by the simple experiments. In the simulations of a hydrofoil catamaran with multi variables, it can be confirmed that the training of LQR controller is possible by using the approximate Jacobian matrix instead of the modeling equation and this controller is not worse than the traditional LQR controller.