DOI QR코드

DOI QR Code

ON DEGENERATE q-TANGENT POLYNOMIALS OF HIGHER ORDER

  • RYOO, C.S. (Department of Mathematics, Hannam University)
  • 투고 : 2016.11.15
  • 심사 : 2016.12.23
  • 발행 : 2017.01.30

초록

In this paper, we introduce degenerate tangent numbers ${\mathcal{T}}^{(k)}_{n,q}({\lambda})$ and tangent polynomials ${\mathcal{T}}^{(k)}_{n,q}(x,{\lambda})$ of higher order. Finally, we obtain interesting properties of these numbers and polynomials.

키워드

참고문헌

  1. L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51-88.
  2. F. Qi, D.V. Dolgy, T. Kim, C.S. Ryoo, On the partially degenerate Bernoulli polynomials of the first kind, Global Journal of Pure and Applied Mathematics, 11 (2015), 2407-2412.
  3. T. Kim, Barnes' type multiple degenerate Bernoulli and Euler polynomials, Appl. Math. Comput. 258 (2015), 556-564.
  4. C.S. Ryoo, A numerical investigation on the structure of the roots of q-Genocchi polynomials, J. Appl. Math. Comput., 26 (2008), 325-332. https://doi.org/10.1007/s12190-007-0011-6
  5. C.S. Ryoo, Multiple q-tangent zeta function and q-tangent polynomials, Applied Mathematical Sciences, 8 (2014), 3755-3761. https://doi.org/10.12988/ams.2014.45329
  6. C.S. Ryoo, Notes on degenerate tangent polynomials, Global Journal of Pure and Applied Mathematics, 11 (2015), 3631-3637.
  7. C.S. Ryoo, A numerical investigation on the zeros of the tangent polynomials, J. Appl. Math. & Informatics, 32 (2014), 315-322. https://doi.org/10.14317/jami.2014.315
  8. C.S. Ryoo, Differential equations associated with tangent numbers, J. Appl. Math. & Informatics, 34 (2016), 487-494. https://doi.org/10.14317/jami.2016.487
  9. P.T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their applications , Journal of Number Theorey, 128 (2008), 738-758. https://doi.org/10.1016/j.jnt.2007.02.007

피인용 문헌

  1. ON CARLITZ'S TYPE q-TANGENT NUMBERS AND POLYNOMIALS AND COMPUTATION OF THEIR ZEROS vol.35, pp.5, 2017, https://doi.org/10.14317/jami.2017.495
  2. A NUMERICAL INVESTIGATION ON THE STRUCTURE OF THE ROOT OF THE (p, q)-ANALOGUE OF BERNOULLI POLYNOMIALS vol.35, pp.5, 2017, https://doi.org/10.14317/jami.2017.587
  3. A NOTE ON q-ANALOGUE OF POLY-BERNOULLI NUMBERS AND POLYNOMIALS vol.35, pp.5, 2017, https://doi.org/10.14317/jami.2017.611
  4. DIFFERENTIAL EQUATIONS ASSOCIATED WITH TWISTED (h, q)-TANGENT POLYNOMIALS vol.36, pp.3, 2017, https://doi.org/10.14317/jami.2018.205
  5. A RESEARCH ON THE GENERALIZED POLY-BERNOULLI POLYNOMIALS WITH VARIABLE a vol.36, pp.5, 2017, https://doi.org/10.14317/jami.2018.475
  6. A STUDY ON q-SPECIAL NUMBERS AND POLYNOMIALS WITH q-EXPONENTIAL DISTRIBUTION vol.36, pp.5, 2018, https://doi.org/10.14317/jami.2018.541
  7. Some Symmetric Identities for the Multiple (p, q)-Hurwitz-Euler eta Function vol.11, pp.5, 2017, https://doi.org/10.3390/sym11050645
  8. Some Properties for Multiple Twisted (p, q)-L-Function and Carlitz’s Type Higher-Order Twisted (p, q)-Euler Polynomials vol.7, pp.12, 2017, https://doi.org/10.3390/math7121205
  9. A note on q-analogue of Hermite-poly-Bernoulli numbers and polynomials vol.23, pp.2, 2017, https://doi.org/10.5937/matmor1902001k
  10. SOME EXPLICIT PROPERTIES OF (p, q)-ANALOGUE EULER SUM USING (p, q)-SPECIAL POLYNOMIALS vol.38, pp.1, 2020, https://doi.org/10.14317/jami.2020.037
  11. Symmetric Properties for Dirichlet-Type Multiple (p,q)-L-Function vol.13, pp.1, 2017, https://doi.org/10.3390/sym13010095