DOI QR코드

DOI QR Code

NEW CONCEPTS OF REGULAR INTERVAL-VALUED FUZZY GRAPHS

  • TALEBI, A.A. (Department of Mathematics, University of Mazandaran) ;
  • RASHMANLOU, HOSSEIN (Sama technical and vocatinal training college, Islamic Azad University) ;
  • DAVVAZ, BIJAN (Department of Mathematics, Yazd University)
  • 투고 : 2016.06.17
  • 심사 : 2016.07.11
  • 발행 : 2017.01.30

초록

Recently, interval-valued fuzzy graph is a growing research topic as it is the generalization of fuzzy graphs. The interval-valued fuzzy graphs are more flexible and compatible than fuzzy graphs due to the fact that they allowed the degree of membership of a vertex to an edge to be represented by interval values in [0.1] rather than the crisp values between 0 and 1. In this paper, we introduce the concepts of regular and totally regular interval-valued fuzzy graphs and discusses some properties of the ${\mu}$-complement of interval-valued fuzzy graph. Self ${\mu}$-complementary interval-valued fuzzy graphs and self-weak ${\mu}$-complementary interval-valued fuzzy graphs are defined and a necessary condition for an interval valued fuzzy graph to be self ${\mu}$-complementary is discussed. We define busy vertices and free vertices in interval valued fuzzy graph and study their image under an isomorphism.

키워드

참고문헌

  1. M. Akram, Wieslaw A. Dudek, Interval-valued fuzzy graphs, Computers Math. Appl, 61 (2011), 289-299. https://doi.org/10.1016/j.camwa.2010.11.004
  2. M. Akram and B. Davvaz, Strong intuitionistic fuzzy graphs, Filomat, 26 (2012), 177-196. https://doi.org/10.2298/FIL1201177A
  3. A. Alaoui, On fuzzification of some concepts of graphs, Fuzzy Sets Syst. 101 (1999), 363-389. https://doi.org/10.1016/S0165-0114(97)00064-X
  4. K.T. Atanassov, Intuitionistic fuzzy sets: Theory and applications, Studies in fuzziness and soft computing, Physical-Verlag, (1999).
  5. K.R. Bhutani, On Automorphism of fuzzy graphs, Pattern Recognition. Lett.9 (1989), 159-162. https://doi.org/10.1016/0167-8655(89)90049-4
  6. F. Harary, Graph Theory, 3rd Edition, Addison-Wesley, Reading, MA. (1972).
  7. K.P. Huber, M.R. Berthold, Application of fuzzy graphs for metamodeling, in: Proceedings of the IEEE conference, (2002), 640-644.
  8. J.N. Mordeson , P.S. Nair, Fuzzy Graphs and fuzzy Hyper graphs, Physical -Verlag, Heidelberg, 1998. Second edition (2001).
  9. J.N. Mordeson, Fuzzy line graphs, Pattern Recognition Lett.14 (1993), 381-384. https://doi.org/10.1016/0167-8655(93)90115-T
  10. S. Mathew , M.S. Sunitha, Node connectivity and arc connectivity of a fuzzy graph, Inf. Sci. 180 (2010), 519-531. https://doi.org/10.1016/j.ins.2009.10.006
  11. A. Nagoorgani, K. Radha, Isomorphism on fuzzy graphs. Int. J. Computer. Math. Sci. 2 (2008), 190-196.
  12. A. Nagoorani, and V.T. Chandrasekaran, Free nodes and busy nodes of a fuzzy graph, East Asian math .J, 22 (2006), 163-170.
  13. A. Rosenfeld, Fuzzy graphs, in: L.A. Zadeh, K.S. FU, M. Shimura (Eds.), Fuzzy Sets and Their Applications, Academic Press, New York, (1975), 77-95.
  14. H. Rashmanlou, S. Samanta, M. Pal and R.A. Borzooei, A study on Bipolar fuzzy graphs, Journal of Intelligent and Fuzzy Systems, 28 (2015), 571-580.
  15. H. Rashmanlou, S. Samanta, M. Pal and R.A. Borzooei, Bipolar fuzzy graphs with categorical properties, International Journal of Computational Intelligent Systems, 8 (2015), 808-818. https://doi.org/10.1080/18756891.2015.1063243
  16. H. Rashmanlou, S. Samanta, M. Pal and R.A. Borzooei, Product of Bipolar fuzzy graphs and their degree, International Journal of General Systems, doi.org/10.1080/03081079.2015.1072521.
  17. H. Rashmanlou and M. Pal, Balanced interval-valued fuzzy graph, Journal of Physical Sciences, 17 (2013), 43-57.
  18. H. Rashmanlou and Y.B. Jun, Complete interval-valued fuzzy graphs, Annals of Fuzzy Mathematics and Informatics, 6 (2013), 677-687.
  19. H. Rashmanlou and M. Pal, Some properties of highly irregular interval-valued fuzzy graphs, World Applied Sciences Journal, 27 (2013), 1756-1773.
  20. H. Rashmanlou, R.A. Borzooei, A note on vague graphs, Algebraic Structures and Their Applications, 2 (2015), 9-19.
  21. M.S. Sunitha, A. Vijayakumar, Complement of a fuzzy graph, Indian journal of pure and Applied Mathematics, 33 (2002), 1451-1464.
  22. A.A. Talebi, H. Rashmanlou, Isomorphism on interval-valued fuzzy graph, Annals of Fuzzy Mathematics and Informatics, 6 (2013), 47-58.
  23. A.A. Talebi, H. Rashmanlou, Complement and isomorphism on bipolar fuzzy graphs, Fuzzy Information and Engineering, 6 (2014), 505-522. https://doi.org/10.1016/j.fiae.2015.01.007
  24. A.A. Talebi, N. Mehdipoor, H. Rashmanlou, Some operations on vague graphs, Journal of Advanced Research in Pure Mathematics, 6 (2014), 61-77. https://doi.org/10.5373/jarpm.1562.092512
  25. L.A. Zadeh, The concept of a linguistic and application to approximate reasoning I. Inf. Sci, 8 (1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5
  26. L.A. Zadeh, Fuzzy sets. Inf. Control, 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X