ON DEGENERATE q-TANGENT POLYNOMIALS OF HIGHER ORDER

C.S. RYOO

Abstract

In this paper, we introduce degenerate tangent numbers $\mathcal{T}_{n, q}^{(k)}(\lambda)$ and tangent polynomials $\mathcal{T}_{n, q}^{(k)}(x, \lambda)$ of higher order. Finally, we obtain interesting properties of these numbers and polynomials.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80.
Key words and phrases : Degenerate tangent numbers and polynomials, tangent numbers and polynomials of higher order, degenerate tangent numbers and polynomials of higher order.

1. Introduction

L. Carlitz introduced the degenerate Bernoulli polynomials(see [1]). Feng Qi et al.[2] studied the partially degenerate Bernoull polynomials of the first kind in p-adic field. T. Kim studied the Barnes' type multiple degenerate Bernoulli and Euler polynomials(see [3]), C. S. Ryoo worked in the area of the tangent numbers and tangent polynomials(see [4, 5, 6, 7, 8]). Recently, Ryoo introduced the degenerate tangent numbers and tangent polynomials(see [6]). In this paper, we introduce degenerate tangent numbers $\mathcal{T}_{n, q}^{(k)}(\lambda)$ and tangent polynomials $\mathcal{T}_{n, q}^{(k)}(x, \lambda)$ of higher order. Throughout this paper we use the following notations. By \mathbb{Z}_{p} we denote the ring of p-adic rational integers, \mathbb{Q}_{p} denotes the field of rational numbers, \mathbb{C}_{p} denotes the completion of algebraic closure of $\mathbb{Q}_{p}, \mathbb{N}$ denotes the set of natural numbers and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$, and \mathbb{C} denotes the set of complex numbers. Let ν_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-\nu_{p}(p)}=p^{-1}$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$ one normally assumes that $|q|<1$. If $q \in \mathbb{C}_{p}$, we normally assume that $|q-1|_{p}<p^{-\frac{1}{p-1}}$ so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. For

$$
g \in U D\left(\mathbb{Z}_{p}\right)=\left\{g \mid g: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p} \text { is uniformly differentiable function }\right\}
$$

[^0]the fermionic p-adic invariant integral on \mathbb{Z}_{p} is defined by Kim as follows(see [3]):
\[

$$
\begin{equation*}
I_{-1}(g)=\int_{\mathbb{Z}_{p}} g(x) d \mu_{-1}(x)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} g(x)(-1)^{x} \tag{1.1}
\end{equation*}
$$

\]

If we take $g_{1}(x)=g(x+1)$ in (1.1), then we see that

$$
\begin{equation*}
I_{-1}\left(g_{1}\right)+I_{-1}(g)=2 g(0) \tag{1.2}
\end{equation*}
$$

We recall that the classical Stirling numbers of the first kind $S_{1}(n, k)$ and $S_{2}(n, k)$ are defined by the relations(see [9])

$$
(x)_{n}=\sum_{k=0}^{n} S_{1}(n, k) x^{k} \text { and } x^{n}=\sum_{k=0}^{n} S_{2}(n, k)(x)_{k},
$$

respectively. Here $(x)_{n}=x(x-1) \cdots(x-n+1)$ denotes the falling factorial polynomial of order n. We also have

$$
\begin{equation*}
\sum_{n=m}^{\infty} S_{2}(n, m) \frac{t^{n}}{n!}=\frac{\left(e^{t}-1\right)^{m}}{m!} \text { and } \sum_{n=m}^{\infty} S_{1}(n, m) \frac{t^{n}}{n!}=\frac{(\log (1+t))^{m}}{m!} \tag{1.3}
\end{equation*}
$$

The generalized falling factorial $(x \mid \lambda)_{n}$ with increment λ is defined by

$$
\begin{equation*}
(x \mid \lambda)_{n}=\prod_{k=0}^{n-1}(x-\lambda k) \tag{1.4}
\end{equation*}
$$

for positive integer n, with the convention $(x \mid \lambda)_{0}=1$. We also need the binomial theorem: for a variable x,

$$
\begin{equation*}
(1+\lambda t)^{x / \lambda}=\sum_{n=0}^{\infty}(x \mid \lambda)_{n} \frac{t^{n}}{n!} \tag{1.5}
\end{equation*}
$$

First, using multiple of p-adic integral, we introduce q-tangent polynomials of higher order $T_{n, q}^{(k)}(x)$: For $k \in \mathbb{N}$, we define
$\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x) \frac{t^{n}}{n!}=\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k-\text { times }} q^{x_{1}+\cdots+x_{k}} e^{\left(x+2 x_{1}+2 x_{2}+\cdots+2 x_{k}\right) t} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{k}\right)$.
By (1.2), tangent polynomials of higher order, $T_{n, q}^{(k)}(x)$ are defined by means of the following generating function

$$
\begin{equation*}
\left(\frac{2}{q e^{2 t}+1}\right)^{k} e^{x t}=\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x) \frac{t^{n}}{n!} \tag{1.7}
\end{equation*}
$$

When $x=0, T_{n, q}^{(k)}(0)=T_{n, q}^{(k)}$ are called the q-tangent numbers of higher order(see [5]). In [5], we studied tangent numbers $T_{n, q}^{(k)}$ polynomials $T_{n, q}^{(k)}(x)$ of higher order and investigate their properties.

Theorem 1.1. For positive integers n and $k \in \mathbb{N}$, we have

$$
\begin{aligned}
& T_{n, q}^{(k)}(x)=\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} q^{x_{1}+\cdots+x_{k}}\left(x+2 x_{1}+\cdots+2 x_{k}\right)^{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{k}\right),}_{k-\text { times }} \\
& T_{n, q}^{(k)}=\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} q^{x_{1}+\cdots+x_{k}}\left(2 x_{1}+\cdots+2 x_{k}\right)^{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{k}\right) .}_{k-\text { times }} .
\end{aligned}
$$

2. Degenerate tangent polynomials of higher order

In this section, we assume that $q \in \mathbb{C}_{p}$. We introduce degenerate tangent polynomials of higher order, $\mathcal{T}_{n, q}^{(k)}(x, \lambda)$. We use the notation

$$
\sum_{k_{1}=0}^{m} \cdots \sum_{k_{n}=0}^{m}=\sum_{k_{1}, \ldots, k_{n}=0}^{m}
$$

Let us assume that $t, \lambda \in \mathbb{Z}_{p}$ such that $|\lambda t|_{p}<p^{-\frac{1}{p-1}}$. Now, using multiple of p-adic integral, we introduce q-tangent polynomials $\mathcal{T}_{n, q}^{(k)}(x, \lambda)$ of higher order : For $k \in \mathbb{N}$, we define

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathcal{T}_{n, q}^{(k)}(x, \lambda) \frac{t^{n}}{n!} \\
& =\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} q^{x_{1}+\cdots+x_{k}}(1+\lambda t)^{\frac{\left(x+2 x_{1}+2 x_{2}+\cdots+2 x_{k}\right)}{\lambda}} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{k}\right)}_{k-\text { times }} \tag{2.1}
\end{align*}
$$

When $x=0, \mathcal{T}_{n, q}^{(k)}(0, \lambda)=\mathcal{T}_{n, q}^{(k)}(\lambda)$ are called the degenerate q-tangent numbers of higher order. By (1.2) and (2.1), we get

$$
\begin{align*}
& \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} q^{x_{1}+\cdots+x_{k}}(1+\lambda t)^{\frac{\left(x+2 x_{1}+2 x_{2}+\cdots+2 x_{k}\right)}{\lambda}} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{k}\right)}_{k-\text { times }} \tag{2.2}\\
& =\left(\frac{2}{q(1+\lambda t)^{2 / \lambda}+1}\right)^{k}(1+\lambda t)^{x / \lambda} .
\end{align*}
$$

By (2.1) and (2.2), degenerate q-tangent polynomials of higher order, $\mathcal{T}_{n, q}^{(k)}(x, \lambda)$ are defined by means of the following generating function

$$
\begin{equation*}
\left(\frac{2}{q(1+\lambda t)^{2 / \lambda}+1}\right)^{k}(1+\lambda t)^{x / \lambda}=\sum_{n=0}^{\infty} \mathcal{T}_{n, q}^{(k)}(x, \lambda) \frac{t^{n}}{n!} \tag{2.3}
\end{equation*}
$$

Thus, by (2.3) and (1.7), we have

$$
\begin{align*}
\sum_{n=0}^{\infty} \lim _{\lambda \rightarrow 0} \mathcal{T}_{n, q}^{(k)}(x, \lambda) \frac{t^{n}}{n!} & =\lim _{\lambda \rightarrow 0}\left(\frac{2}{q(1+\lambda t)^{2 / \lambda}+1}\right)^{k}(1+\lambda t)^{x / \lambda} \\
& =\left(\frac{2}{q e^{2 t}+1}\right)^{k} e^{x t} \tag{2.4}\\
& =\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x) \frac{t^{n}}{n!}
\end{align*}
$$

By comparing coefficients of $\frac{t^{n}}{n!}$ in the above equation, we arrive at the following theorem.

Theorem 2.1. For positive integers n, we have

$$
\lim _{\lambda \rightarrow 0} \mathcal{T}_{n, q}^{(k)}(x, \lambda)=T_{n, q}^{(k)}(x) .
$$

By (2.1), we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathcal{T}_{n, q}^{(k)}(x, \lambda) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} q^{x_{1}+\cdots+x_{k}}\left(\frac{x+2 x_{1}+\cdots+2 x_{k}}{\lambda}\right)_{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{k}\right) \frac{\lambda^{n} t^{n}}{n!}}_{k-\text { times }} . \tag{2.5}
\end{align*}
$$

By (1.5) and (2.5), we have the following theorem.
Theorem 2.2. For positive integers n and $k \in \mathbb{N}$, we have

$$
\begin{align*}
& \mathcal{T}_{n, q}^{(k)}(x, \lambda) \\
& =\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} q^{x_{1}+\cdots+x_{k}}\left(x+2 x_{1}+\cdots+2 x_{k} \mid \lambda\right)_{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{k}\right)}_{k-\text { times }} \tag{2.6}
\end{align*}
$$

Corollary 2.3. For positive integers n, we have

$$
\mathcal{T}_{n, q}^{(k)}(\lambda)=\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} q^{x_{1}+\cdots+x_{k}}\left(2 x_{1}+\cdots+2 x_{k} \mid \lambda\right)_{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{k}\right) .
$$

We observe that

$$
\begin{equation*}
\left(2 x_{1}+\cdots+2 x_{k} \mid \lambda\right)_{n}=\sum_{l=0}^{n} \lambda^{n-l} S_{1}(n, l)\left(2 x_{1}+\cdots+2 x_{k}\right)^{l}, \tag{2.7}
\end{equation*}
$$

Thus, by (2.5), (2.7), and Theorem 1.1, we have the following theorem.

Theorem 2.4. For positive integers n and $k \in \mathbb{N}$, we have

$$
\mathcal{T}_{n, q}^{(k)}(x, \lambda)=\sum_{l=0}^{n} \lambda^{n-l} S_{1}(n, l) T_{l, q}^{(k)}(x) .
$$

By (2.3) and (1.5), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \mathcal{T}_{n, q}^{(k)}(x, \lambda) \frac{t^{n}}{n!} & =\left(\frac{2}{q(1+\lambda t)^{2 / \lambda}+1}\right)^{k}(1+\lambda t)^{x / \lambda} \\
& =\left(\sum_{m=0}^{\infty} \mathcal{T}_{m, q}^{(k)}(\lambda) \frac{t^{m}}{m!}\right)\left(\sum_{l=0}^{\infty}(x \mid \lambda)_{l} \frac{t^{l}}{l!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} \mathcal{T}_{l, q}^{(k)}(\lambda)(x \mid \lambda)_{n-l}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

By comparing coefficients of $\frac{t^{n}}{n!}$ in the above equation, we have the following theorem.

Theorem 2.5. For $n \geq 0$, we have

$$
\mathcal{T}_{n, q}^{(k)}(x, \lambda)=\sum_{l=0}^{n}\binom{n}{l} \mathcal{T}_{l, q}^{(k)}(\lambda)(x \mid \lambda)_{n-l} .
$$

From (2.1), we get

$$
\begin{align*}
\sum_{n=0}^{\infty} \mathcal{T}_{n, q}^{(k)}(x+y, \lambda) \frac{t^{n}}{n!} & =\left(\frac{2}{q(1+\lambda t)^{2 / \lambda}+1}\right)^{k}(1+\lambda t)^{(x+y) / \lambda} \\
& =\left(\frac{2}{q(1+\lambda t)^{2 / \lambda}+1}\right)^{k}(1+\lambda t)^{x / \lambda}(1+\lambda t)^{y / \lambda} \\
& =\left(\sum_{n=0}^{\infty} \mathcal{T}_{n, q}^{(k)}(x, \lambda) \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty}(y \mid \lambda)_{n} \frac{t^{n}}{n!}\right) \tag{2.8}\\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} \mathcal{T}_{l, q}^{(k)}(x, \lambda)(y \mid \lambda)_{n-l}\right) \frac{t^{n}}{n!}
\end{align*}
$$

Therefore, by (2.8), we have the following theorem.
Theorem 2.6. For $n \in \mathbb{Z}_{+}$, we have

$$
\mathcal{T}_{n, q}^{(k)}(x+y, \lambda)=\sum_{l=0}^{n}\binom{n}{l} \mathcal{T}_{l, q}^{(k)}(x, \lambda)(y \mid \lambda)_{n-l}
$$

From Theorem 2.6, we note that $\mathcal{T}_{n, q}^{(k)}(x, \lambda)$ is a Sheffer sequence.

By replacing t by $\frac{e^{\lambda t}-1}{\lambda}$ in (2.3), we obtain

$$
\begin{align*}
\left(\frac{2}{q e^{2 t}+1}\right)^{k} e^{x t} & =\sum_{n=0}^{\infty} \mathcal{T}_{n, q}^{(k)}(x, \lambda)\left(\frac{e^{\lambda t}-1}{\lambda}\right)^{n} \frac{1}{n!} \\
& =\sum_{n=0}^{\infty} \mathcal{T}_{n, q}^{(k)}(x, \lambda) \lambda^{-n} \sum_{m=n}^{\infty} S_{2}(m, n) \lambda^{m} \frac{t^{m}}{m!} \tag{2.9}\\
& =\sum_{m=0}^{\infty}\left(\sum_{n=0}^{m} \mathcal{T}_{n, q}^{(k)}(x, \lambda) \lambda^{m-n} S_{2}(m, n)\right) \frac{t^{m}}{m!} .
\end{align*}
$$

Thus, by (2.9) and (1.7), we have the following theorem.
Theorem 2.7. For $n \in \mathbb{Z}_{+}$, we have

$$
T_{m, q}^{(k)}(x)=\sum_{n=0}^{m} \lambda^{m-n} \mathcal{T}_{n, q}^{(k)}(x, \lambda) S_{2}(m, n)
$$

By replacing t by $\log (1+\lambda t)^{1 / \lambda}$ in (1.7), we have

$$
\begin{align*}
\sum_{n=0}^{\infty} T_{n, q}^{(k)}(x)\left(\log (1+\lambda t)^{1 / \lambda}\right)^{n} \frac{1}{n!} & =\left(\frac{2}{q(1+\lambda t)^{2 d / \lambda}+1}\right)^{k}(1+\lambda t)^{x / \lambda} \tag{2.10}\\
& =\sum_{m=0}^{\infty} \mathcal{T}_{m, q}^{(k)}(x, \lambda) \frac{t^{m}}{m!}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{n=0}^{\infty} T_{n, q}^{(k)}(x)\left(\log (1+\lambda t)^{1 / \lambda}\right)^{n} \frac{1}{n!} \\
& =\sum_{m=0}^{\infty}\left(\sum_{n=0}^{m} \mathcal{T}_{n, q}^{(k)}(x, \lambda) \lambda^{m-n} S_{1}(m, n)\right) \frac{t^{m}}{m!} \tag{2.11}
\end{align*}
$$

Thus, by (2.10) and (2.11), we have the following theorem.
Theorem 2.8. For $n \in \mathbb{Z}_{+}$, we have

$$
\mathcal{T}_{m, q}^{(k)}(x, \lambda)=\sum_{n=0}^{m} \lambda^{m-n} T_{n, q}^{(k)}(x) S_{1}(m, n) .
$$

Finally, we obtain distribution relation of degenerate tangent polynomials of higher order as follows: For $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, we obtain

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathcal{T}_{n, q}^{(k)}(x, \lambda) \frac{t^{n}}{n!} \\
& =\left(\frac{2}{q(1+\lambda t)^{2 / \lambda}+1}\right) \cdots\left(\frac{2}{q(1+\lambda t)^{2 / \lambda}+1}\right)(1+\lambda t)^{x / \lambda} \\
& =\left(\frac{2}{q(1+\lambda t)^{2 d / \lambda}+1}\right)^{k} \\
& \quad \times \sum_{a_{1}, \cdots, a_{k}=0}^{d-1}(-1)^{a_{1}+\cdots+a_{k}} q^{a_{1}+\cdots+a_{k}}(1+\lambda t)
\end{aligned}
$$

From the above, we obtain

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathcal{T}_{n, q}^{(k)}(x, \lambda) \frac{t^{n}}{n!} \\
& =\sum_{a_{1}, \ldots, a_{k}=0}^{d-1}(-1)^{a_{1}+\cdots+a_{k}} q^{a_{1}+\cdots+a_{k}} \sum_{n=0}^{\infty} \mathcal{T}_{n, q}^{(k)}\left(\frac{2 a_{1}+\ldots+2 a_{k}+x}{d}, \frac{\lambda}{d}\right) \frac{(d t)^{n}}{n!}
\end{aligned}
$$

By comparing coefficients of $\frac{t^{n}}{n!}$ in the above equation, we arrive at the following theorem.

Theorem 2.9. For $m \in \mathbb{N}$ with $m \equiv 1(\bmod 2)$, we have

$$
\mathcal{T}_{n, q}^{(k)}(x, \lambda)=m^{n} \sum_{a_{1}, \ldots, a_{k}=0}^{m-1}(-1)^{a_{1}+\cdots+a_{k}} q^{a_{1}+\cdots+a_{k}} \mathcal{T}_{n, q}^{(k)}\left(\frac{2 a_{1}+\ldots+2 a_{k}+x}{m}, \frac{\lambda}{m}\right) .
$$

Letting $\lambda \rightarrow 0$ in Theorem 2.9 gives the theorem

$$
T_{n, q}^{(k)}(x)=m^{n} \sum_{a_{1}, \ldots, a_{k}=0}^{m-1}(-1)^{a_{1}+\cdots+a_{k}} q^{a_{1}+\cdots+a_{k}} T_{n, q}^{(k)}\left(\frac{2 a_{1}+\cdots+2 a_{k}+x}{m}\right)
$$

which was proved by Ryoo [5, Theorem 2.4].

References

1. L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51-88.
2. F. Qi, D.V. Dolgy, T. Kim, C.S. Ryoo, On the partially degenerate Bernoulli polynomials of the first kind, Global Journal of Pure and Applied Mathematics, 11 (2015), 2407-2412.
3. T. Kim, Barnes' type multiple degenerate Bernoulli and Euler polynomials, Appl. Math. Comput. 258 (2015), 556-564.
4. C.S. Ryoo, A numerical investigation on the structure of the roots of q-Genocchi polynomials, J. Appl. Math. Comput., 26 (2008), 325-332.
5. C.S. Ryoo, Multiple q-tangent zeta function and q-tangent polynomials, Applied Mathematical Sciences, 8 (2014), 3755-3761.
6. C.S. Ryoo, Notes on degenerate tangent polynomials, Global Journal of Pure and Applied Mathematics, 11 (2015), 3631-3637.
7. C.S. Ryoo, A numerical investigation on the zeros of the tangent polynomials, J. Appl. Math. \& Informatics, 32 (2014), 315-322.
8. C.S. Ryoo, Differential equations associated with tangent numbers, J. Appl. Math. \& Informatics, 34 (2016), 487-494.
9. P.T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their applications, Journal of Number Theorey, 128 (2008), 738-758.
C.S. Ryoo received Ph.D. degree from Kyushu University. His research interests focus on the numerical verification method, scientific computing and p-adic functional analysis.
Department of Mathematics, Hannam University, Daejeon, 306-791, Korea
e-mail:ryoocs@hnu.kr

[^0]: Received November 15, 2016. Revised December 20, 2016. Accepted December 23, 2016. (C) 2017 Korean SIGCAM and KSCAM.

