J. Appl. Math. & Informatics Vol. 35(2017), No. 1 - 2, pp.113 - 120
https://doi.org/10.14317/jami.2017.113

ON DEGENERATE ¢-TANGENT POLYNOMIALS OF HIGHER
ORDER
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ABSTRACT. In this paper, we introduce degenerate tangent numbers 7;1(2) \)

and tangent polynomials 7;5,171)(1’, A) of higher order. Finally, we obtain in-
teresting properties of these numbers and polynomials.
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1. Introduction

L. Carlitz introduced the degenerate Bernoulli polynomials(see [1]). Feng Qi
et al.[2] studied the partially degenerate Bernoull polynomials of the first kind
in p-adic field. T. Kim studied the Barnes’ type multiple degenerate Bernoulli
and Euler polynomials(see [3]), C. S. Ryoo worked in the area of the tangent
numbers and tangent polynomials(see [4, 5, 6, 7, 8]). Recently, Ryoo introduced
the degenerate tangent numbers and tangent polynomials(see [6]). In this pa-
per, we introduce degenerate tangent numbers 7;(,12)()\) and tangent polynomials
7;(2) (2, ) of higher order. Throughout this paper we use the following nota-
tions. By Z, we denote the ring of p-adic rational integers, @, denotes the field
of rational numbers, C, denotes the completion of algebraic closure of Q,, N
denotes the set of natural numbers and Z4 = NU {0}, and C denotes the set of
complex numbers. Let v, be the normalized exponential valuation of C, with
[pl, = p~»®) = p=1 When one talks of g-extension, ¢ is considered in many
ways such as an indeterminate, a complex number ¢ € C, or p-adic number
g € C,. If ¢ € C one normally assumes that |¢q| < 1. If ¢ € C,, we normally

assume that |¢ — 1|, < p 77 so that ¢% = exp(zlog g) for |z|, < 1. For
g € UD(Z,) = {glg : Z, — C,, is uniformly differentiable function},
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the fermionic p-adic invariant integral on Z, is defined by Kim as follows(see

3]):

p—1
o) = [ gdinate) = i, 5 o)1 ()

If we take g1(z) = g(x + 1) in (1.1), then we see that
I_1(g1) + I1-1(g9) = 29(0) (1.2)

We recall that the classical Stirling numbers of the first kind S (n, k) and Sz (n, k)
are defined by the relations(see [9])

(2)p = Z S1(n, k)z* and 2" = Z Sa(n, k)(z)k,
k=0

k=0
respectively. Here (), = z(x — 1)--- (z — n + 1) denotes the falling factorial
polynomial of order n. We also have

= o (et =1)™ > " (log(1+t)™
Z Sg(n,m)m =7 and Z Sl(mm)m = (1.3)
n=m n=m
The generalized falling factorial (x|\), with increment X is defined by
n—1
@\ = [ (&= k) (1.4)
k=0

for positive integer n, with the convention (z|A\)g = 1. We also need the binomial
theorem: for a variable x,
x - tn
(14 At)*/A = Z(m)nm. (1.5)
n=0
First, using multiple of p-adic integral, we introduce g-tangent polynomials of
higher order TT(L]fq) (x): For k € N, we define

o0

tn
STy = [ e [ ) (o),
: Zp Zyp

n=0
k—times
(1.6)
By (1.2), tangent polynomials of higher order, TT(L]fq) (z) are defined by means of
the following generating function

k 00
2 xt k t
(qe%H) =S T .7)
n=0
When z =0, T, ,(qu) (0) = Télfq) are called the g-tangent numbers of higher order(see

[5]). In [5], we studied tangent numbers 7, ,(qu) polynomials T,(llfq) (z) of higher order
and investigate their properties.
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Theorem 1.1. For positive integers n and k € N, we have

Tflk) / / Tk (4 2y A+ oo+ 22p) A1 (m1) -+ - dp—1 (1),
N
k—times
(k)_/ /qm1+ 2wy - 4 22) dpa (21) - A ().
Zp Zp
k—times

2. Degenerate tangent polynomials of higher order

In this section, we assume that ¢ € C,. We introduce degenerate tangent
polynomials of higher order, 7;(2)(1:, A). We use the notation

ké...i_ f};

n=0 ki,..oskn=

Let us assume that ¢, A € Z, such that ||, < pfﬁ. Now, using multiple of

p-adic integral, we introduce ¢-tangent polynomials 7}(2) (z, \) of higher order :
For k € N, we define

oo t”
Z ) (2, ) —
n,q 9 |
= n!
:/ / qw1+~-+Ik(1 +)\t)4( tEee >\2Jr R d/ifl(xl)"'d/lufl(xk). ( )
ZP ZP
——
k—times

When z = 0, 7;L,q (0, = 7}( (A) are called the degenerate g-tangent numbers
of higher order. By (1.2) and (2 1), we get

/ / LA T i (a) - ()

k—times (2.2)

2 g T/
_ (q(1+)\t)2/’\+1> (14 A0/,

By (2.1) and (2.2), degenerate g-tangent polynomials of higher order, 7;(2) (x,\)
are defined by means of the following generating function

Tl

2 g IA k)
<q(1+)\t)2//\+1) (14 )™/ 27;57(1 - (2.3)
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Thus, by (2.3) and (1.7), we have
i lim 7,%) (x )x)ﬁ = lim 2 ' (14 )=/
=m0 Tl a0 \g(1 + A)2/A 4+ 1

9 k
(1) © (24

o0

- ST
n,q :
n=0 n!

tn
By comparing coefficients of - in the above equation, we arrive at the following
n!

theorem.

Theorem 2.1. For positive integers n, we have
: k k
lim 7.0 (2,3) = 7o)

By (2.1), we have
ZT(k) z, /\
ot (T AH2T 4+ 22 AT
:Z/ '~/q1+ ”( : k) dpp—r (1) -+~ dpp () —
n=0 Ly Ly A n
—_——

k—times

(2.5)
By (1.5) and (2.5), we have the following theorem.

Theorem 2.2. For positive integers n and k € N, we have
k
T (2, 2)
= / .. / qac1+~~+wk (1‘ + 2z 4+ 2xk|>\)n d,uil(xl) Ce du,l(xk). (2.6)
z

k—times

Corollary 2.3. For positive integers n, we have

T(k) / / T14- +$k(2$ +. _A'_ka‘)\) dp— 1(],‘1) ~dp— 1($k)
We observe that

(221 + - + 224\ ZA" Si(n, )2z 4o+ 22),(27)
=0

Thus, by (2.5), (2.7), and Theorem 1.1, we have the following theorem.
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Theorem 2.4. For positive integers n and k € N, we have

=Y A8 (0, DT (),
=0

By (2.3) and (1.5), we have

k
k) DN
> E,qm <q1“tw+1) (1 + At)/

_ (Z_ 750 m) (Z(m%)

=i<_() () (@l )2,

n
By comparing coefficients of — in the above equation, we have the following
n!

theorem.
Theorem 2.5. Forn > 0, we have
n
(k) (x,N) Z ( ) M) (2| A)p—
1=0

From (2.1), we get

9] k
t" 2
T (2N et
n;) wa e N = gaaen 1) CFW

(14 M)A (1 + Ae)v/A

o i (2.8)
(Z(yIA) )

2|
\/\_/\/
>

(

Therefore, by (2.8), we have the following theorem.

Theorem 2.6. Forn € Z,, we have

n

T8+ 53 =3 ()TN

=0

From Theorem 2.6, we note that 7;1(,]2) (z,A) is a Sheffer sequence.
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At

By replacing ¢t by € n (2.3), we obtain

k (o) \t n
2 xt (k) e —1 1
(qe% + 1) © - Z T (@A) A n!

n=0
=Y TE @, AT Y Sa(m, A" — (2.9)
n=0 m=n
- Z Z n,q (‘Tv ) g(m,n) M
m=0 \n=0
Thus, by (2.9) and (1.7), we have the following theorem.
Theorem 2.7. Forn € Z., we have
T(k) Z)\m ”T(k) (x, A)Sz(m,n).
By replacing t by log(1 + At)'/* in (1.7), we have
1 2 g
T () (log(1 + M)t/ = 1+ At)®/*
Z (Og + ) ) nl = \gapngr) TFM
- (2.10)
tm
_ (k)
- ZTm,q(xv)‘) 1’
m=0
and
Z T (@ (10g (1+ At)l/k)
(2.11)

tm
(Z 7;(’2) (z, A" " S  (m, n)) poar

Thus, by (2.10) and (2.11), we have the following theorem.

Theorem 2.8. Forn € Z,, we have

m

Zx\m "T(k) )S1(m,n).
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Finally, we obtain distribution relation of degenerate tangent polynomials of
higher order as follows: For d € N with d = 1( mod 2), we obtain

) m
k
Z;) 7:1(,11) (.TI, )‘) g

2 2
S L U (e W R VAT 72
(q(1+/\t 2/A+1> <q(1+)\t)2/>‘+1>( +1)

)
9 k
- <q(1+At>2d/*+1>
201 + ...+ 2ar +x
« Z (71)a1+"'+akqa1+”'+ak(1+)\t) d
ay, - ,ar=0

From the above, we obtain
> TN

d—1 9]
Giteo et Gttt 2a1 + ...+ 2ar +x XN\ (dt)”
— Z (—1)@ttargort +kz7;(z)( 1 - k ’d)()

]
a,...,ap=0 n=0 n
t’n.
By comparing coefficients of — in the above equation, we arrive at the following
n!
theorem.

Theorem 2.9. For m € N with m = 1( mod 2), we have

m—1

bag ai+ta 201 4 ...+ 2a+x A
T (@, \) = m" Z (—1)ar+-targarto k’];f@)( a1 = ak x’m)'
al,...,akZO
Letting A — 0 in Theorem 2.9 gives the theorem
m—1
2 e 49
Télfq) (:L') =m" Z (_1)a1+--~+akqa1+--~+akT7SIfq) ( ay + n‘l‘ ap + 1')

at,...,ar=0

which was proved by Ryoo [5, Theorem 2.4].
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