DOI QR코드

DOI QR Code

ON THE WEIERSTRASS THEOREM OF A MAXIMAL SPACELIKE SURFACE

  • Received : 2017.01.16
  • Accepted : 2017.01.31
  • Published : 2017.01.31

Abstract

The purpose of this paper is to show how to represent a maximal spacelike surface in $L^n$ in terms of its generalized Guass map.

Keywords

References

  1. Abe, K. and Magid, M., Indefinite Rigidity of Complex Submanifold and Maximal Surfaces, Mathematical Proceedings 106 (1989), no. 3, 481-494
  2. Akutagawa, K. and Nishigawa, S., The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space, Tohoku Mathematical Journal 42 (1990), no. 1, 67-82. https://doi.org/10.2748/tmj/1178227694
  3. Asperti, Antonio C. and Vilhena, Jose Antonio M., Spacelike Surfaces in $L^4$ with Degenerate Gauss Map, Results in Mathematics 60 (2011), no. 1, 185-211. https://doi.org/10.1007/s00025-011-0146-5
  4. Estudillo, Francisco J. M. and Alfonso Romero, On Maximal Surfaces in the n-Dimensional Lorentz-Minkowski Space, Geometria Dedicata 38: 167-174, 1991.
  5. Graves, L., Codimension One Isometric Immersions between Lorentz Spaces, Ph.D. Thesis, Brown University, 1977.
  6. Kobayasi, O., Maximal Surfaces in the 3-dimensional Minkowski Space $L^3$, Tokyo J. Math. 6 (1983), 297-309. https://doi.org/10.3836/tjm/1270213872
  7. Milnor, T. K., Harmonic Maps and Classical Surface Theory in Minkowski 3-space, Trans. of AMS 280 (1983), 161-185.
  8. O'Neil, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
  9. Osserman, R.,A Survey of Minimal Surfaces, Dover, New York, 1986