DOI QR코드

DOI QR Code

ON A TWO WEIGHTS ESTIMATE FOR THE COMMUTATOR

  • Chung, Daewon (Faculty of Basic Sciences, Mathematics Major, Keimyung University)
  • Received : 2016.09.30
  • Accepted : 2017.01.31
  • Published : 2017.01.31

Abstract

We provide quantitative two weight estimates for the commutator of the Hilbert transform under certain conditions on a pair of weights (u, v) and b in $Carl_{u,v}$. In [10] and [11], Bloom's inequality is shown in a modern setting, and the boundedness of the commutators is provided by assuming both weights u, v are $A_2$ and $b{\in}BMO_{\rho}$. In the present paper we show that the condition on b can be replaced by $Carl_{u,v}$ by using the joint $A^d_2$ condition.

Keywords

References

  1. J. Alvarez, R. J. Bagby, D. S. Kurtz and C. Perez, Weighted stimates for coomutators of linear operators Studia Math. 104 (2) (1993), 195-209. https://doi.org/10.4064/sm-104-2-195-209
  2. O. Beznosova, Linear bound for the dyadic paraproduct on weighted Lebesgue space $L^2$(w). J. Func. Anal. 255 (2008), 994-1007. https://doi.org/10.1016/j.jfa.2008.04.025
  3. O.Beznosova and A. Reznikov, Equivalent de nitions of dyadic Muckenhoupt and Revers Holder classes in terms of Carleson sequences, weak classes, and comparability of dyadic Llog L and $A_{\infty}$ constants Rev. Mat. Iberoamericana, 30 (4) (2014), 1191-1236. https://doi.org/10.4171/RMI/812
  4. S. Bloom. A commutator theorem and weighted BMO, Trans. Amer. Math. Soc. 292 (1) (1985) 103-122 https://doi.org/10.1090/S0002-9947-1985-0805955-5
  5. O. Beznosova, D. Chung, J.C. Moraes, and M.C. Pereyra, On two weight estimates for dyadic operators, To appear in Volume II in Honor of Cora Sadosky, AWM-Springer Series. available at arXiv:1602.02084.
  6. D. Chung, Sharp estimates for the commutators of the Hilbert, Riesz transforms and the Beurling-Ahlfors operator on weighted Lebsgue spaces, Indiana Univ. Math. Journal, 60 (2011) no. 5, 1543-1588. https://doi.org/10.1512/iumj.2011.60.4453
  7. D. Chung, C. Pereyra, and C. Perez, Sharp bounds for general comutators on weighted Lebesgue spaces, Trans. Amer. Math. Soc. 364 (3) (2012) 1163-1177. https://doi.org/10.1090/S0002-9947-2011-05534-0
  8. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables Ann of Math. 103 (2), (1976) 611-635. https://doi.org/10.2307/1970954
  9. O. Dragicevic, L. Grafakos, M. C. Pereyra, and S. Petermichl, Extrapolation and sharp norm estimates for classical operators in weighted Lebesgue spaces. Publ. Mat. 49, (2005), 73-91. https://doi.org/10.5565/PUBLMAT_49105_03
  10. I. Holmes, M.T. Lacey and B.D. Wick, Blooms inequality: commutators in a two-weight setting, Arch. Math. 106 (2016), no. 1, 53-63. https://doi.org/10.1007/s00013-015-0840-8
  11. I. Holmes, M.T. Lacey and B.D. Wick, Commutators in the two-weight setting, Math. Ann. (2016). doi:10.1007/s00208-016-1378-1.
  12. S. Petermichl, Dyadic shifts and logarithmic estimate for Hankel operators with matrix symbol C. R. Acad. Sci. Paris 330 (2000), 455-460 https://doi.org/10.1016/S0764-4442(00)00162-2
  13. S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical $A_p$ characteristic. Amer. J. of Math. 129 (2007), 1355-1375. https://doi.org/10.1353/ajm.2007.0036
  14. J.C. Moraes and M.C. Pereyra, Weighted estimates for dyadic Paraproduct and t-Haar multiplies with complexity (m, n), Publ. Mat. 57 (2013), 265-294. https://doi.org/10.5565/PUBLMAT_57213_01
  15. F. Nazarov, S. Treil and A. Volberg, The Bellman functions and the two-weight inequalities for Haar Multipliers, Journal of the AMS, 12 (1992), 909-928.
  16. M. Wilson, Weighted inequalities for the dyadic square function without dyadic $A_{\infty}$, Duke Math. J. 55 (1987) 19-49 https://doi.org/10.1215/S0012-7094-87-05502-5

Cited by

  1. TWO WEIGHT ESTIMATE FOR THE PARAPRODUCT IN THE SPACE OF HOMOGENEOUS TYPE vol.35, pp.3, 2019, https://doi.org/10.7858/eamj.2019.028