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ON THE WEIERSTRASS THEOREM OF A MAXIMAL

SPACELIKE SURFACE

Seong-Kowan Hong

Abstract. The purpose of this paper is to show how to represent a max-

imal spacelike surface in Ln in terms of its generalized Guass map.

1. Introduction

It is well known that in the theory of minimal surfaces in R3, the classical
Weierstrass representation formula has played a major role [9]. The formula
shows that a minimal surface in R3 can be represented by real parts of complex
integrations of holomorphic functions. The classical result is extended to a
minimal surface in Rn by Hoffman and Osserman. Since a maximal surface
in Ln is a counterpart of a minimal surface in Rn, it is quite natural to ask if
similar representation formula of a maximal surface in Ln can be obtained. The
purpose of this paper is to show how to represent a maximal spacelike surface
in Ln in terms of its generalized Guass map.

2. The main result

We begin with fixing our terminology and notation. Let Ln = (Rn, g) de-
note Lorentzian n-space with the flat Lorentzian metric g of index 1. Let M be
a connected smooth orientable 2 manifold, and X : M −→ Ln be a smooth
imbedding of M into Ln. Throughout this paper, we assume that X is a
spacelike imbedding or M is a spacelike surface in Ln, that is, the pull back
X∗g of the Lorentzian metric g via X is a positive definite metric on M .

Let M = (M, ḡ) be a spacelike surface in Ln with the induced metric ḡ = X∗g
so that X : M −→ Ln is an isometric imbedding. By (u1, u2) we always denote
isothermal coordinates compatible with the orientation on M . Then the metric
ḡ is expressed locally as

ḡ = λ2((du1)2 + (du2)2), λ > 0. (1)
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It is well known that (u1, u2) is defined around each point of M , and we may
regard M as a Riemann surface by introducing a complex local coordinate
z = u1 + iu2.

We shall define the generalized Gauss map using local coordinates. Let M
be a spacelike surface in Ln, or a Riemann surface. Locally, if u1 and u2 are
isothermal parameters in a neighborhood of p on M , then M is defined near
p by a map X(z) = (x1(z), . . . , xn(z)) ∈ Ln, where z = u1 + iu2. Define the
generalized Gauss map Ψ by

Ψ(z) =
∂X

∂u1
+ i

∂X

∂u2
,

where Ψ(z) ∈ CPn−1+ = {Z = (z1, . . . , zn) ∈ CPn−1 | gc(Z,Z) > 0}. Here gc
denotes the flat Hermitian metric in Cn with the signature (−,+, . . . ,+). Let
us think of the effect of choosing another isothermal parameters ũ1, ũ2, and
z̃ = ũ1 + iũ2. Since the change of coordinates on a Riemann surface is analytic,
we know that

∂X

∂ũ1
+ i

∂X

∂ũ2
= (

∂X

∂u1
+ i

∂X

∂u2
)(
∂u1
∂ũ1
− i∂u1

∂ũ2
) ,

which implies Ψ(z) = Ψ(z̃) in CPn−1+ . Since the pair of vectors ∂X
∂u1

, ∂X
∂u2

are
orthogonal and equal in length in Ln, it follows that

∂X

∂u1
+ i

∂X

∂u2
∈ Qn−2+ ,

where Qn−2+ = {(z1, . . . , zn) ∈ CPn−1+ | −z12 + z2
2 + . . . + zn

2 = 0}. Conse-
quently, the generalized Gauss map Ψ is given locally by

(u1, u2) −→ ∂X

∂u1
+ i

∂X

∂u2
∈ Qn−2+ ⊂ CPn−1+ . (2)

We may represent the Gauss map locally by

Ψ(z) = (φ1(z), . . . , φn(z)) ,

where φk = 2∂xk

∂z = ∂xk

∂u1
− i∂xk

∂u2
. Denote (φ1, . . . , φn) by Φ. Then Ψ is holomor-

phic when Φ is antiholomorphic and Ψ is antiholomorphic when Φ is holomor-
phic. We will consider Φ as the Gauss map instead of Ψ.

Theorem 2.1. Let M be a spacelike surface in Ln, and Φ the Gauss map on
M . Then Φ is holomorphic if and only if M is maximal.

Proof. For a maximal surface M in Ln defined by an isometric imbedding X :
M −→ Ln, we know that

0 = 2λ2H =
∂2X

(∂u1)2
+

∂2X

(∂u2)2
,

where λ2 = g( ∂X∂ui
, ∂X∂ui

) and u = (u1, u2) is an isothermal coordinate on M .

Therefore each xk is harmonic and φk = ∂xk

∂u1
− i∂xk

∂u2
is analytic. For any k and
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j, φk

φj
is analytic around p when φk(p) 6= 0 and thus

Φ : z −→ (φ1, . . . , φn) ∈ CPn−1+

is holomorphic.
Convesely, suppose Φ is holomorphic. In other words, φk

φj
is always holomor-

phic whenever the denominators do not vanish. Since ∂X
∂u1

and ∂X
∂u2

are linearly

independent at any point z0, not all φj(z0) cannot vanish. Say φj(z0) 6= 0.
Then γk(z) = φk(z)/φj(z) is analytic near z0. Set µ(z) = 1/φj(z). Then

0 =
∂µ

∂z
φk + µ

∂φk
∂z

.

But then
∂2xk

(∂u1)2
+ ∂2xk

(∂u2)2
= 4∂

2xk

∂z∂z

= 2 ∂
∂z (2∂xk

∂z )
= 2 ∂

∂z (φk)

= −2 1
µ
∂µ
∂z φk .

Let

− 2

µ

∂µ

∂z
= f(z) + ig(z) ,

where f and g are real. Since

∂2xk
(∂u1)2

+
∂2xk

(∂u2)2
= − 2

µ

∂µ

∂z
φk

is real, imaginary part of

∂2xk
(∂u1)2

+
∂2xk

(∂u2)2
= (f(z) + ig(z))φk

must vanish. Hence

∂2X

(∂u1)2
+

∂2X

(∂u2)2
= f

∂X

∂u1
+ g

∂X

∂u2
.

Note that f ∂X∂u1
+ g ∂X∂u2

∈ Tz0M . Since

∂2X

(∂u1)2
+

∂2X

(∂u2)2
= 2λ2H ∈ Tz0M ∩ T⊥z0M

and Tz0M is nondegenerate, H at the given point is zero. �

We now turn to the representation of a maximal surface in terms of its Gauss
map. We start with the special case of simply connected surfaces.

Let X : M −→ Ln be simply connected maximal surface defined by an
imbedding. Since M is simply connected Riemann surface, by the uniformiza-
tion theorem, we may view M as the unit disk, the unit sphere, or the complex
plane. When M ∼= S2, X is constant since each xk is harmonic on the com-
pact Riemann surface. Therefore every simply connected maximal surface is
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considered to be an imbedded submanifold of a simply connected domain in the
complex plane.

Theorem 2.2. Let D be a simply connected domain in the complex plane.
Define an 1-1 smooth map

X : D −→ Ln (n > 3)

in one of the following ways:
Case 1. X is the direct sum into L2 and Rn−2, where (x3, . . . , xn) defines

a (immersed) minimal surface in isothermal parameters in D, and x1, x2 are
harmonic functions such that x1 − x2 is constant in D.

Case 2. Let ψ be an arbitrary holomorphic functions in D, ψ 6≡ 0, and let
g1, ... , gn−2 be arbitrary meromorphic functions in D such that at any p in
D, the maximum order of pole at p of g1, ... , gn−2 is greater than or equal

to the order of pole of
∑n−2
k=1 g

2
k and the same as the order of zero of ψ at p.

Futhermore,
n−2∑
k=1

|gk − gk|(p) > 0

wherever ψ(p) 6= 0.
Set

Φ = (φ1, . . . , φn)

= ψ
2 (
∑n−2
k=1 g

2
k + 1,

∑n−2
k=1 g

2
k − 1, 2g1, . . . , 2gn−2) ,

(3)

and let

xk = Re

∫
φk , k = 1, . . . , n . (4)

Then the map X : D −→ Ln defines a maximal surface in terms of isothermal
parameters in D.

Conversely, every simply connected maximal surface in Ln is obtained by the
above construction.

Remark 1. The two cases of the theorem are mutually exclusive. Let ψ =
φ1 − φ2, φ3 = g1ψ, ... , φn = gn−2ψ. If x1 − x2 is constant, then φ1 ≡ φ2, i.e.
ψ ≡ 0. Hence the assumption ψ 6≡ 0 guarantees x1 − x2 is not constant.

Proof. Let u = (u1, u2) be a coordinate in D. We begin with case 1. Since
x1 − x2 ≡ constant,

g(
∂X

∂ui
,
∂X

∂ui
) =

n∑
k=3

(
∂xk
∂ui

)2 > 0 (5)

by the regularity of (x3, . . . , xn). Since (x3, . . . , xn) : D −→ Rn−2 defines a
minimal surface in isothermal parameters u1, u2 in D, φ3, ... , φn are analytic
functions such that

φ3
2 + . . .+ φn

2 = 0 . (6)
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Since x1, x2 are harmonic functions such that x1 − x2 ≡ constant, we have
analytic functions φ1, ... , φk such that φ1 ≡ φ2 and

−φ12 + φ2
2 + φ3

2 + . . .+ φn
2 = 0 . (7)

Futhermore,

gc(Φ,Φ) =

n∑
k=3

|φk|2

=

n∑
k=3

{(∂xk
∂u1

)2 + (
∂xk
∂u2

)2} > 0 .

(8)

Therefore X : D −→ Ln defines a maximal surface in an isothermal coordinate
in D and its Gauss map is Φ.

As for the case 2, we know φk’s are analytic everywhere and

φk =
∂xk
∂u1
− i∂xk

∂u2
(9)

from (4), where u = (u1, u2) is a coordinate in D. Direct computation using (3)
shows Φ lies in the quadric Qn−2 ∈ CPn−1. This means

g(
∂X

∂u1
,
∂X

∂u1
) = g(

∂X

∂u2
,
∂X

∂u2
) and g(

∂X

∂u1
,
∂X

∂u2
) = 0 .

We also want to show gc(Φ,Φ) > 0. When ψ(p) 6= 0, all g1, . . . , gn−2 are

analytic and gc(Φ,Φ) = |ψ|2
2 (

∑n−2
k=1 |gk − gk|

2
) > 0 near p. When ψ(p) = 0,

gc(Φ,Φ) ≥
∑n−2
k=1 |ψgk|

2
and at least one (ψgk)(p) 6= 0. Therefore gc(Φ,Φ) > 0

everywhere. From this fact we obtain

g(
∂X

∂ui
,
∂X

∂ui
) > 0 , g(

∂X

∂u1
,
∂X

∂u2
) = 0 ,

which implies that ∂X
∂u1

and ∂X
∂u2

are linearly independent spacelike vectors.
Hence X : D −→ Ln defines a maximal surface in Ln in terms of an isothermal
coordinate in D.

For the converse, given a simply connected maximal surface in Ln, by intro-
ducing isothermal parameters, the surface may be represented by an imbedding
X : D −→ Ln, where D is a simply connected domain in the complex plane.
The function defined by (9) will be analytic and satisfy −φ12+φ2

2+. . .+φn
2 = 0

and gc(Φ,Φ) > 0. There are two possibilities:

1. If φ1 ≡ φ2, then
∑n
k=3 φk

2 ≡ 0. Since gc(Φ,Φ) =
∑n
k=3 |φk|

2
> 0,

the nonconstant map (x3, . . . , xn) : D −→ Rn−2 defines an imbedded minimal
surface in isothermal parameters in D. Futhermore, x1 and x2 are harmonic
maps such that x1 − x2 ≡ constant. This is just the case 1.

2. If φ1 6≡ φ2, then the map ψ = φ1 − φ2 ia an analytic map with only
isolated zeros. Define

gk =
φk+2

ψ
, k = 1, . . . , n− 2. (10)



120 S. HONG

The function gk’s are meromorphic and can only have poles where ψ vanishes.
At a point p where ψ(p) 6= 0, it follows that

Φ = (φ1, . . . , φn)

= ψ
2 (
∑n−2

1 g2k + 1,
∑n−2

1 g2k − 1, 2g1, . . . , 2gn−2) ,
(11)

lies on the subset of Qn−2, and |ψ|
2

∑n−2
k=1 |gk − gk| > 0 at p. Since (3) holds

everywhere except some isolated points, by continuity, it must holds at those
isolated points where ψ vanishes. Finally, we will show that ψ and g1, ... , gn−2
satisfy all the hypotheses. Suppose ψ(p) = 0. From the definition of ψ and
gk’s, it is clear that the order of zero of ψ at p is greater than or equal to the
maximum order of pole of g1, ... , gn−2 at p. If the order of zero of ψ at p was
greater than the maximum order of pole of g1, ... , gn−2 at p, then all ψgk’s
would be zero at p, and gc(Φ,Φ) = 0, a contradiction. Hence the order of zero
of ψ at p is exactly same as the maximum order of pole of g1, ... , gn−2 at p. If

the order of pole of
∑n−2
k=1 gk

2 was greater than the maximum order of pole of

g1, ... , gn−2 at p, then ψ(
∑n−2
k=1 gk

2) = 2φ1 − ψ could not be analytic at p, a

contradiction. Hence the order of pole of
∑n−2
k=1 gk

2 at p is less than or equal to
the maximum order of pole of g1, ... , gn−2. This completes the proof. �

We next modify the theorem to give a representation formula of arbitrary
maximal surfaces. We begin with a Riemann surface So and define an 1-1 map
X : So −→ Ln in one of two ways. Case 1 is exactly as in Theorem 2. In case 2,
we again choose n-2 arbitrary meromorphic functions gk on So, but in place of
the function ψ we choose an analytic differential α on So which is locally of the
form α = ψ(z)dz in terms of a complex parameter z on So. If we then define φk
locally by (3), we will obtain global differentials αk = φk(z)dz on So and may
then set

xk = Re

∫
αk , (12)

where the integral is taken along a path from a fixed point to a variable point
in So. We must add the condition

Re

∫
C

αk = 0

for any closed curve C on So, so that (12) defines a single-valued map X :
So −→ Ln. This map will then define a maximal surface in Ln provided the
hypotheses in case 2 of Theorem 2 are satisfied. Conversely, every maximal
surface in Ln is represented in one of these two forms. The proof is modeled
exactly on that of Theorem 2.
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