DOI QR코드

DOI QR Code

Performance verification methods of an inertial measurement unit in flight environment using the real time dual-navigation

실시간 다중항법을 이용한 관성측정기의 비행환경 성능 검증 기법

  • Received : 2016.08.09
  • Accepted : 2017.01.02
  • Published : 2017.01.01

Abstract

Abstract It is necessary to verify the properties of an inertial measurement unit in the flight environment before applying to military applications. In this paper, we presented a new approach to verify an inertial measurement unit(IMU) in regard to the performance and the robustness in flight environments for the high-dynamics vehicle systems. We proposed two methods for verification of an IMU. We confirmed normal operation of an IMU and properties in flight environment by using direct comparison method. And we proposed real time multi-navigation system to complement the first method. The proposed method made it possible to compare navigation result at the same time. Therefore, it is easy to analyze the performance of an inertial navigation system and robustness during the vehicle flight. To verify the proposed method, we carried out a flight test as well as an experimental test of flight vibration on the ground. As a result of the experiment, we confirmed flight environment properties of an IMU. Therefore, we shows that the proposed method can serve the reliability improvement of IMU.

본 논문에서는 고기동 항체 적용을 위한 관성측정기의 비행환경 특성을 분석할 수 있는 방법을 제안한다. 먼저 관성측정기의 센서 출력을 직접 비교하는 방법을 제안하고, 시험결과를 통하여 장 단점을 분석하였다. 관성측정기의 센서 출력을 비교하는 방법의 단점 보완과 항법 해를 비교할 수 있는 방법을 제안한다. 이를 위해 유도전자장치를 이용하여 실시간 다중 항법 연산이 가능하도록 구현하였다. 제안한 방법은 유도전자장치를 이용하기 때문에 시스템의 안정성과 타 구성품의 영향도 등을 고려해야 한다. 따라서 실시간 다중 항법 연산이 가능하도록 구현된 내용을 기술하고, 제안한 방법의 검증을 위해 지상시험과 비행시험을 수행하였다. 시험 결과를 통해 제안한 방법은 관성측정기 개발의 신뢰성을 향상하는데 기여함을 확인하였다.

Keywords

References

  1. Oliver J. Woodman, " An introduction to inertial navigation," Technical Report, University of Cambridge, 2007, pp. 5-10.
  2. Steven Nasiri, " A Critical Review of MEMS Gyroscopes Technology and Commercialization Status," Inven Sense, California, 2005, pp.1-3.
  3. Yazdi, Navid, Farrokh Ayazi, and Khalil Najafi. "Micromachined inertial sensors." Proceedings of the IEEE 86.8 (1998): 1640-1659. https://doi.org/10.1109/5.704269
  4. Perlmutter, Michael, and Laurent Robin. "High-performance, low cost inertial MEMS: A market in motion!." Position Location and Navigation Symposium (PLANS), 2012 IEEE/ION. IEEE, 2012.
  5. Trusov, Alexander A. "Overview of MEMS Gyroscopes: History, Principles of Operations, Types of Measurements." University of California, Irvine, USA, maj (2011).
  6. Savage, Paul G. "Strapdown inertial navigation integration algorithm design part 1: Attitude algorithms." Journal of guidance, control, and dynamics 21.1 (1998): 19-28. https://doi.org/10.2514/2.4228
  7. Roscoe, Kelly M. "Equivalency between strapdown inertial navigation coning and sculling integrals/algorithms." Journal of Guidance, Control, and Dynamics 24.2 (2001): 201-205. https://doi.org/10.2514/2.4718
  8. Kang, Chul, Nam Ik Cho, and Chan Park, "Approach to direct coning/sculling error compensation based on the sinusoidal modelling of IMU signal." Radar, Sonar & Navigation, IET 7.5 (2013): 527-534. https://doi.org/10.1049/iet-rsn.2012.0094
  9. ByungSu Park, KyungJun Han, SanWoo Lee, and MyeongJong Yu, "Analysis of compensation for a g-sensitivity scale-factor error for a MEMS vibratory gyroscope", Journal of Micromechanics and Microengineering, 25.11(2015):115006. https://doi.org/10.1088/0960-1317/25/11/115006