DOI QR코드

DOI QR Code

Generalized Hough Transform using Internal Gradient Information

내부 그레디언트 정보를 이용한 일반화된 허프변환

  • Received : 2017.05.15
  • Accepted : 2017.06.20
  • Published : 2017.06.30

Abstract

The generalized Hough transform (GHough) is a useful technique for detecting and locating 2-D model. However, GHough requires a 4-D parameter array and a large amount of time to detect objects of unknown scale and orientation because it enumerates all possible parameter values into a 4-D parameter space. Several n-to-1 mapping algorithms were proposed to reduce the parameter space from 4-D to 2-D. However, these algorithms are very likely to fail due to the random votes cast into the 2-D parameter space. This paper proposes to use internal gradient information in addition to the model boundary points to reduce the number of random votes cast into 2-D parameter space. Experimental result shows that our proposed method can reduce both the number of random votes cast into the parameter space and the execution time effectively.

일반화된 허프변환(GHough)은 임의의 2차원 모델 추출을 위해 사용되는 유용한 기법이다. 그러나 GHough는 모델의 회전과 축척 관련 사전 정보가 없을 경우 모든 경우의 수를 나열하는 변환 방식을 택하기 때문에 4차원 패러미터 배열이라는 방대한 메모리 사용이 불가피하며 실행시간 또한 오래 걸릴 수밖에 없다. 이를 개선하기 위해 제안된 몇몇 n-to-1 변환 방식 들은 4차원 대신 2차원 패러미터 배열 사용만으로도 임의의 모델 추출을 가능케 한 반면 2차원 패러미터 공간에 던져지는 무작위 투표 때문에 모델 추출 오류 가능성 또한 높다 하겠다. 본 논문은 이와 같은 2차원 패러미터 공간에 던져지는 무작위 투표를 감소시키기 위한 방안으로 모델 내부의 추가적인 그레디언트 정보 활용을 제안하며 모델 윤곽선 정보에 추가로 모델 내부 그레디언트 정보를 활용할 경우 2차원 패러미터 공간에 던져지는 무작위 투표수를 효과적으로 줄일 수 있으며 따라서 실행시간 또한 단축될 수 있음을 실험을 통해 입증한다.

Keywords

Acknowledgement

Supported by : 광주대학교

References

  1. BYAMBASUREN SODGEREL, Y. K. Kim and M. H. Kim, "8-Straight Line Directions Recognition Algorithm for Hand Gestures Using Coordinate Information," Journal of digital Convergence, Vol. 13, No. 9, pp. 259-267, Sep. 2015. DOI : 10.14400/jdc.2015.13.9.259
  2. H. J. Moon, M. H. Lee andK. H. Jeong, "Authentication Performance Optimization for Smart-phone based Multimodal Biometrics, "Journal of digital Convergence, Vol. 13, No. 6, pp. 151-156, Jun. 2015. DOI :10.14400/jdc.2015.13.6.151
  3. S. K. Kang and S. H. Chun, "Real-Time Object Tracking Algorithm based on Pattern Classification in Surveillance Networks," Journal of digital Convergence, Vol. 14, No. 2, pp. 183-190, Feb. 2016. DOI : 10.14400/jdc.2016.14.2.183
  4. Y. K. Kim, J. G. Lim and M. H. Kim, "Lip Reading Method Using CNN for Utterance Period Detection," Journal of digital Convergence, Vol. 14, No. 8, pp. 233-243, Aug. 2016. DOI : 10.14400/jdc.2016.14.8.233
  5. P. V. C. Hough, Method and means for recognizing complex patterns, U. S. Patent 3,069,654. Dec. 1962.
  6. R. O. Duda and P. E. Hart, "Use of the Hough transform to detect lines and curves in pictures," Communications of the ACM, Vol. 15, No. 1, pp. 11-15, Jan. 1972. DOI : 10.1145/361237.361242
  7. P. M. Mend0. J. Farber, "A parallel mechanism for detecting curves in pictures," IEEE Transactions on Computers, Vol. 24, pp. 96-98, Jan. 1975. DOI : 10.1109/T-C.1975.224087
  8. D. H. Ballard, "Generalizing Hough transform to detect arbitrary shapes, "Pattern Recognition, Vol. 13, pp. 111-122, 1981. DOI : 10.1016/0031-3203(81)90009-1
  9. J. Illinggorth and J. Kittler, "A survey of the Hough transform," Computer Vision, Graphics and Image Processing, Vol. 44, pp. 87-116, Oct. 1988. DOI : 10.5244/c.1.43
  10. P. Mukhopadhyay and B. Chaudhuri, "A survey of Hough Transform," Pattern Recognition, Vol. 48, pp. 993-1010, Mar. 2015. DOI : 10.1016/j.patcog.2014.08.027
  11. P. P. Roy, U. Pal and J. Llados, "Seal object detection in document images using GHT of local component shapes," Procceedings of the 2010 ACM Symposium on Applied Computing, Sierre, Switzerland, pp. 23-27, 2010. DOI : 10.1145/1774088.1774094
  12. C. H. Chung, S. C. Cheng and C. C. Chang, "Adaptive image segmentation for region-based object retrieval using generalized Hough transform," Patten Recognition, Vol. 43, No. 10, pp. 3219-3232, Oct. 2010. DOI: 10.1016/j.patcog.2010.04.022
  13. S. Chiu, C. Wen, J. Lee, K. Lin and H. Chen, "Fast Randdomized Generalized Hough Transform for Arbitrary Shape Detection," International Journal of Innovative Computing, Information Control Vol. 8, No. 2, 2012.
  14. P. K. Ser and W. C. Siu, "A New Generalized Hough Transform for the Detection of Irregular Objects," Journal of Visual Communication and Image Representation, Vol. 6, No. 3, pp. 256-264, Sep. 1995. DOI: 10.1006/jvci.1995.1022
  15. C. P. Chau and W. C. Siu, "Generalized dual-point Hough transform for object recognition," Proc. of IEEE International Conf. on Image Processing, Kobe, Japan pp. 560-564, 1999. DOI: 10.1109/icip.1999.821691
  16. C. P. Chau and W. C. Siu, "Adaptive Dual-Point Hough Transform for Object Recognition," Computer Vision and Image Understanding, Vol. 96, No. 1, pp. 1-16, Oct. 2004. DOI: 10.1016/j.cviu.2004.04.005
  17. Preeyakorm TIPWAI, "A Modified Hough Transform for Image Search," IEICE Transaction Information and System, Vol. E90-D, No. 1, Jan. 2007. DOI : 10.1093/ietisy/e90-1.1.165
  18. L. S. Davis and S. Yam, A generalized Hough-like transformation for shape recognition Technical Report 134, University of Texas Computer Sciences, 1980.