References
- Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modelling and forecasting realized volatility, Econometrica, 71, 579-625. https://doi.org/10.1111/1468-0262.00418
- Aue, A., Horvath, L., and Pellatt, D. (2017). Functional generalized autoregressive conditional heteroskedasticity, Journal of Time Series Analysis, 38, 3-21. https://doi.org/10.1111/jtsa.12192
- Bollerslev, T. (1986). Generalized autoregressive heteroskedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
- Brockwell, P. and Davis, R. A. (1991). Time Series: Theory and Methods, Springer, New York.
- Didericksen, D., Kokoszka, P., and Zhang, X. (2010). Empirical properties of forecasts with the functional autoregressive model (Technical report), Utah State University.
- Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1007. https://doi.org/10.2307/1912773
- Hormann, S., Horvath, L., and Reeder, R. (2013). A functional version of the ARCH model, Econometric Theory, 29, 267-288. https://doi.org/10.1017/S0266466612000345
- Jin, M. K., Yoon, J. E., and Hwang, S. Y. (2017). Choice of frequency via principal component for highfrequency volatility models, Korean Journal of Applied Statistics, 30, 747-757. https://doi.org/10.5351/KJAS.2017.30.5.747
- Martens, M. (2002). Measuring and forecasting S&P 500 index-futures volatility using high-frequency data, Journal of Futures Markets, 22, 497-518. https://doi.org/10.1002/fut.10016
- Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis (2nd ed), Springer, New York.
- Tsay, R. S. (2010). Analysis of Financial Time Series (3rd ed), John Wiley & Sons, New York.
- Yoon, J. E. and Hwang, S. Y. (2015). Volatility computations for financial time series: high frequency and hybrid method, Korean Journal of Applied Statistics, 28, 1163-1170. https://doi.org/10.5351/KJAS.2015.28.6.1163