DOI QR코드

DOI QR Code

LIDAR를 활용한 지하광산의 안정성 분석에 관한 연구

A Study on the Stability Analysis of Underground Mine using LIDAR

  • 투고 : 2017.12.04
  • 심사 : 2017.12.20
  • 발행 : 2017.12.31

초록

본 연구에서는 LIDAR를 이용하여 채굴적의 형상을 수치적으로 정확히 측량하고 이때 획득된 점군 데이터를 3차원 전산해석에 직접 반영함으로써 구조물의 실제 형상을 전산해석에 그대로 반영하는 과정을 모사하고 있다. 해석 대상은 채수율 향상을 목적으로 개발된 주방식 하이브리드 채광법이 적용되고 있는 지하 석회석광산의 일부 구역이다. 연구대상 구역에 대한 LIDAR 측정을 통해, 상하부 수직 안전광주의 중심축은 NW 방향으로 치우쳐 있고 특히 하부 수직 안전광주의 경우 설계단면인 $100m^2$ 보다 약 $34m^2$ 만큼 작은 것으로 확인되었다. 또한 LIDAR 측량 결과를 바탕으로 전산해석을 실시한 결과, 하부 수직보안광주의 하단부에 응력집중이 발생하면서 수직 안전광주 전체에 전단파괴양상이 나타나는 것으로 확인되어 보강작업이 제안된 바 있다. 따라서 LIDAR에 의한 채굴적의 측정은 안전광주의 기하학적 구조 및 현상을 정량적으로 정확히 분석할 수 있으며 이를 통한 채굴적의 안정성 분석은 보다 높은 신뢰도를 제시할 수 있다는 점에서 매우 효과적인 채굴적 형상 계측 기법의 하나로 제안될 수 있을 것이다.

This study describes a precise numerical analysis process by adopting the real image of mine openings obtained by LIDAR, which can produce a point cloud data by measuring the target surface numerically. Research area is a section of underground limestone mine which is used hybrid room-and-pillar method for improving the production rate. From the application of LIDAR to this section several results were deduced, that is, the central axis of upper and lower vertical safety pillars is distorted to the direction of NW and the section area of lower vertical safety pillar is $34m^2$ smaller than the designed area of $100m^2$. The results of precise measurement in geometrical shape of mine openings and precise simulation in numerical analysis confirms that LIDAR techniques can be suggested as a valuable tool for stability analysis in underground mine by configuring the mine opening shape.

키워드

참고문헌

  1. Abellan, A., Jaboyedoff, M., Oppikofer, T. and Vilaplana, J.M., 2009, Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event, Natural Hazards and Earth System Science, Vol. 9, 365-372. https://doi.org/10.5194/nhess-9-365-2009
  2. Abellan, A., Oppikofer, T., Jaboyedoff, M., Rosser, N.J., Lim, M. and Lato, M.J., 2014, Terrestrial laser scanning of rock slope instabilities, Earth Surface Processes and Landforms, Vol. 39, No. 1, 80-97. https://doi.org/10.1002/esp.3493
  3. Cai, M., Kaiser, P.K., Uno, H., Tasaka, Y. and Minami, M., 2004, Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system, Int. J. Rock Mech. Min. Sci., Vol. 41, 3-19. https://doi.org/10.1016/S1365-1609(03)00025-X
  4. Cai, M., Kaiser, P.K., Tasaka, Y. and Minami, M., 2007, Determination of residual strength parameters of jointed rock masses using GSI system, Int. J. Rock Mech. Min. Sci., Vol. 44, 247-265. https://doi.org/10.1016/j.ijrmms.2006.07.005
  5. Esterhuizen, G.S., Dolinar, D.R. and Ellenberger, J.L., 2008, Pillar strength and design methodology for stone mines, Proc. 27th Int. Congr. on Ground Control in Min., Morgantown, 241-253.
  6. Geogeny Consultants Group INC., 2014, Stability analysis of Daesung MDI Donghae Mine, Daesung Mining Development INC., 38-41.
  7. Greenwald, H.P., Howarth, H.C. and Hartman, I., 1939, Experiments on strength of small pillars of coal in the Pittsburgh bed, U.S Bur. Mines Tech. Paper, No. 605.
  8. Holland, C.T. and Gaddy, F.L., 1964, The strength of coal mine pillar, Proc. 6th U.S. Symp. rock mech., Eds. Spokes, E.M. and Christiansen, C.R., Rolla, 450-466.
  9. Kasperski, J., Delacourt, C., Allemand, P., Potherat, P., Jaud, M. and Varrel, E., 2010, Application of a Terrestrial Laser Scanner (TLS) to the study of the Séchilienne landslide (Isère France), Remote Sensing, Vol. 2, No. 12, 2785-2802. https://doi.org/10.3390/rs122785
  10. Kemeny, J., Turner, K. and Norton, B., 2006, LIDAR for rock mass characterization: hardware, software, accuracy and best-practices, Proc. of the workshop on Laser and Photogrammetric Methods for Rock Face Characterization, Golden, 49-62.
  11. Kim, C. and Kemeny, J., 2009, Measurement of joint roughness in large-scale rock fracture using LIDAR, Tunnel & Underground Space, Vol. 19, No. 1, 52-63.
  12. Kim, Y.B., Chung, S.K., Jo, S.H., Kim, C.O. and Um, W.W., Hybrid room-and-pillar mining method, Patent No. 1015657890000, 2015.10.
  13. Lee, J.C., Moon, D.Y., Kim, N.S. and Seo, D.J., 2006, Calculation of over cutting volume on tunnel using 3D laser scanner, Proc. the Korean Society of Civil Engineers, 4608-4611.
  14. Lee, S. and Jeon, S., 2016, A study on the extraction of slope surface orientation using LIDAR with respect to triangulation method and sampling on the point cloud, Tunnel & Underground Space, Vol. 26, No. 1, 46-58. https://doi.org/10.7474/TUS.2016.26.1.046
  15. Lee, S.J., Choi, S.O., Lee, S., Jeon, S., Jin, Y.H. and Jung, M.S., 2016, Analysis of blasting overbreak using stereo photogrammetry in an underground mine, Tunnel & Underground Space, Vol. 26, No. 5, 348-362. https://doi.org/10.7474/TUS.2016.26.5.348
  16. Lee, S. and Jeon, S., 2017, A Study on the roughness measurement for joints in rock mass using LIDAR, Tunnel & Underground Space, Vol. 27, No. 1, 58-68. https://doi.org/10.7474/TUS.2017.27.1.058
  17. Oh, S., 2011, Extraction of rock discontinuity orientation by laser scanning technique, Master's thesis, Seoul National University, Korea, 73-74.
  18. Oppikofer, T., Jaboyedoff, M., Blikra, L., Derron, M.H. and Metzger, R., 2009, Characterization and monitoring of the Anes rockslide using terrestrial laser scanning, Natural Hazards and Earth System Sci., Vol. 9, No. 1, 1003-1019. https://doi.org/10.5194/nhess-9-1003-2009
  19. Park, S.H., Lee, S.G., Lee, B.K. and Kim, C.H., 2015, A study on reliability of joint orientation measurements in rock slope using 3d laser scanner, Tunnel & Underground Space, Vol. 25, No. 1, 97-106. https://doi.org/10.7474/TUS.2015.25.1.097
  20. Rosser, N.J., Petley, D.N., Lim, M., Dunning, S.A. and Allison, R.J., 2005, Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion, Quarterly J. Eng. Geology and Hydrogeology, Vol. 38, No. 4, 363-375. https://doi.org/10.1144/1470-9236/05-008