DOI QR코드

DOI QR Code

Basics of Ion Mobility Mass Spectrometry

  • Lee, Jong Wha (Center for Analytical Chemistry, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science (KRISS))
  • Received : 2017.11.29
  • Accepted : 2017.12.19
  • Published : 2017.12.30

Abstract

Ion mobility mass spectrometry (IM-MS) combines the advantages of ion mobility spectrometry (IMS) and MS for effective gas-phase ion analysis. Separation of ions based on their mobilities prior to MS can be performed without a great loss in other analytical figures of merit, and the extra dimension of analysis offered by IM can be beneficial for isomer and complex sample analyses. In this review, basic principles of IMS and IM-MS are described in addition to an introduction to various IMS techniques and commercial IM-MS instruments. The nature of collision cross-section (${\Omega}_D$), an important parameter determining the transport properties of ions in IMS, is also explained in detail.

Keywords

References

  1. Paglia, G.; Astarita, G. Nat. Protoc. 2017, 12, 797. https://doi.org/10.1038/nprot.2017.013
  2. Gray, C. J.; Thomas, B.; Upton, R.; Migas, L. G.; Eyers, C. E.; Barran, P. E.; Flitsch, S. L. BBA-GEN Subjects 2016, 1860, 1688. https://doi.org/10.1016/j.bbagen.2016.02.003
  3. Zheng, X.; Aly, N. A.; Zhou, Y.; Dupuis, K. T.; Bilbao, A.; Paurus, Vanessa L.; Orton, D. J.; Wilson, R.; Payne, S. H.; Smith, R. D.; Baker, E. S. Chem. Sci. 2017, 8, 7724. https://doi.org/10.1039/C7SC03464D
  4. Hines, K. M.; Ross, D. H.; Davidson, K. L.; Bush, M. F.; Xu, L. Anal. Chem. 2017, 89, 9023. https://doi.org/10.1021/acs.analchem.7b01709
  5. Morsa, D.; Defize, T.; Dehareng, D.; Jerome, C.; De Pauw, E. Anal. Chem. 2014, 86, 9693. https://doi.org/10.1021/ac502246g
  6. Kim, K.; Lee, J. W.; Chang, T.; Kim, H. I. J. Am. Soc. Mass Spectrom. 2014, 25, 1771. https://doi.org/10.1007/s13361-014-0949-1
  7. Lapthorn, C.; Pullen, F.; Chowdhry, B. Z. Mass Spectrom. Rev. 2013, 32, 43. https://doi.org/10.1002/mas.21349
  8. Lanucara, F.; Holman, S. W.; Gray, C. J.; Eyers, C. E. Nat. Chem. 2014, 6, 281. https://doi.org/10.1038/nchem.1889
  9. Bush, M. F.; Hall, Z.; Giles, K.; Hoyes, J.; Robinson, C. V.; Ruotolo, B. T. Anal. Chem. 2010, 82, 9557. https://doi.org/10.1021/ac1022953
  10. Ruotolo, B. T.; Benesch, J. L. P.; Sandercock, A. M.; Hyung, S. -J.; Robinson, C. V. Nat. Protoc. 2008, 3, 1139. https://doi.org/10.1038/nprot.2008.78
  11. Heck, A. J. R. Nat. Methods 2008, 5, 927. https://doi.org/10.1038/nmeth.1265
  12. Kurulugama, R. T.; Darland, E.; Kuhlmann, F.; Stafford, G.; Fjeldsted, J. Analyst 2015, 140, 6834. https://doi.org/10.1039/C5AN00991J
  13. May, J. C.; Goodwin, C. R.; Lareau, N. M.; Leaptrot, K. L.; Morris, C. B.; Kurulugama, R. T.; Mordehai, A.; Klein, C.; Barry, W.; Darland, E.; Overney, G.; Imatani, K.; Stafford, G. C.; Fjeldsted, J. C.; McLean, J. A. Anal. Chem. 2014, 86, 2107. https://doi.org/10.1021/ac4038448
  14. Giles, K.; Pringle, S. D.; Worthington, K. R.; Little, D.; Wildgoose, J. L.; Bateman, R. H. Rapid Commun. Mass Spectrom. 2004, 18, 2401. https://doi.org/10.1002/rcm.1641
  15. Giles, K.; Williams, J. P.; Campuzano, I. Rapid Commun. Mass Spectrom. 2011, 25, 1559. https://doi.org/10.1002/rcm.5013
  16. Groessl, M.; Graf, S.; Knochenmuss, R. Analyst 2015, 140, 6904. https://doi.org/10.1039/C5AN00838G
  17. Silveira, J. A.; Ridgeway, M. E.; Laukien, F. H.; Mann, M.; Park, M. A. Int. J. Mass Spectrom. 2017, 413, 168. https://doi.org/10.1016/j.ijms.2016.03.004
  18. Michelmann, K.; Silveira, J. A.; Ridgeway, M. E.; Park, M. A. J. Am. Soc. Mass Spectrom. 2015, 26, 14. https://doi.org/10.1007/s13361-014-0999-4
  19. Silveira, J. A.; Michelmann, K.; Ridgeway, M. E.; Park, M. A. J. Am. Soc. Mass Spectrom. 2016, 27, 585. https://doi.org/10.1007/s13361-015-1310-z
  20. Cottingham, K. Anal. Chem. 2003, 75, 435 A. https://doi.org/10.1021/ac0258913
  21. Armenta, S.; Alcala, M.; Blanco, M. Anal. Chim. Acta 2011, 703, 114. https://doi.org/10.1016/j.aca.2011.07.021
  22. Cumeras, R.; Figueras, E.; Davis, C. E.; Baumbach, J. I.; Gracia, I. Analyst 2015, 140, 1376. https://doi.org/10.1039/C4AN01100G
  23. Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases, Wiley: New York, 1988.
  24. Revercomb, H. E.; Mason, E. A. Anal. Chem. 1975, 47, 970. https://doi.org/10.1021/ac60357a043
  25. Kaur-Atwal, G.; O'Connor, G.; Aksenov, A. A.; Bocos-Bintintan, V.; Paul Thomas, C. L.; Creaser, C. S. Int. J. Ion Mobil. Spectrom. 2009, 12, 1. https://doi.org/10.1007/s12127-009-0021-1
  26. Siems, W. F.; Wu, C.; Tarver, E. E.; Hill, H. H., Jr.; Larsen, P. R.; McMinn, D. G. Anal. Chem. 1994, 66, 4195. https://doi.org/10.1021/ac00095a014
  27. May, J. C.; Dodds, J. N.; Kurulugama, R. T.; Stafford, G. C.; Fjeldsted, J. C.; McLean, J. A. Analyst 2015, 140, 6824. https://doi.org/10.1039/C5AN00923E
  28. Fernandez-Maestre, R. Int. J. Mass Spectrom. 2017, 421, 8. https://doi.org/10.1016/j.ijms.2017.05.018
  29. Mason, E. A.; Schamp, H. W. Ann. Phys. 1958, 4, 233. https://doi.org/10.1016/0003-4916(58)90049-6
  30. Siems, W. F.; Viehland, L. A.; Hill, H. H. Anal. Chem. 2012, 84, 9782. https://doi.org/10.1021/ac301779s
  31. Wyttenbach, T.; Bleiholder, C.; Bowers, M. T. Anal. Chem. 2013, 85, 2191. https://doi.org/10.1021/ac3029008
  32. Bleiholder, C. Analyst 2015, 140, 6804. https://doi.org/10.1039/C5AN00712G
  33. Stow, S. M.; Causon, T. J.; Zheng, X.; Kurulugama, R. T.; Mairinger, T.; May, J. C.; Rennie, E. E.; Baker, E. S.; Smith, R. D.; McLean, J. A.; Hann, S.; Fjeldsted, J. C. Anal. Chem. 2017, 89, 9048. https://doi.org/10.1021/acs.analchem.7b01729
  34. May, J. C.; Morris, C. B.; McLean, J. A. Anal. Chem. 2017, 89, 1032. https://doi.org/10.1021/acs.analchem.6b04905
  35. Lalli, P. M.; Corilo, Y. E.; Fasciotti, M.; Riccio, M. F.; de Sa, G. F.; Daroda, R. J.; Souza, G. H. M. F.; McCullagh, M.; Bartberger, M. D.; Eberlin, M. N.; Campuzano, I. D. G. J. Mass Spectrom. 2013, 48, 989. https://doi.org/10.1002/jms.3245
  36. Davidson, K. L.; Bush, M. F. Anal. Chem. 2017, 89, 2017. https://doi.org/10.1021/acs.analchem.6b04605
  37. Dwivedi, P.; Wu, C.; Matz, L. M.; Clowers, B. H.; Siems, W. F.; Hill, H. H. Anal. Chem. 2006, 78, 8200. https://doi.org/10.1021/ac0608772
  38. Ujma, J.; Giles, K.; Morris, M.; Barran, P. E. Anal. Chem. 2016, 88, 9469. https://doi.org/10.1021/acs.analchem.6b01812
  39. Wyttenbach, T.; Helden, G. V.; Batka, J. J.; Carlat, D.; Bowers, M. T. J. Am. Soc. Mass Spectrom. 1997, 8, 275. https://doi.org/10.1016/S1044-0305(96)00236-X
  40. Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. J. Phys. Chem. 1996, 100, 16082. https://doi.org/10.1021/jp961623v
  41. Young, M. N.; Bleiholder, C. J. Am. Soc. Mass Spectrom. 2017, 28, 619. https://doi.org/10.1007/s13361-017-1605-3
  42. Bleiholder, C.; Johnson, N. R.; Contreras, S.; Wyttenbach, T.; Bowers, M. T. Anal. Chem. 2015, 87, 7196. https://doi.org/10.1021/acs.analchem.5b01429
  43. Kim, H. I.; Johnson, P. V.; Beegle, L. W.; Beauchamp, J. L.; Kanik, I. J. Phys. Chem. A 2005, 109, 7888. https://doi.org/10.1021/jp051274h
  44. Eiceman, G. A.; Nazarov, E. G.; Stone, J. A. Anal. Chim. Acta 2003, 493, 185. https://doi.org/10.1016/S0003-2670(03)00762-1
  45. Laszlo, K. J.; Bush, M. F., J. Phys. Chem. A 2017, 121, 7768. https://doi.org/10.1021/acs.jpca.7b08154
  46. Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. J. Chem. Phys. 1998, 108, 2416. https://doi.org/10.1063/1.475625
  47. von Helden, G.; Hsu, M. T.; Gotts, N.; Bowers, M. T. J. Phys. Chem. 1993, 97, 8182. https://doi.org/10.1021/j100133a011
  48. Boschmans, J.; Jacobs, S.; Williams, J. P.; Palmer, M.; Richardson, K.; Giles, K.; Lapthorn, C.; Herrebout, W. A.; Lemiere, F.; Sobott, F. Analyst 2016, 141, 4044. https://doi.org/10.1039/C5AN02456K
  49. Seo, J.; Warnke, S.; Gewinner, S.; Schollkopf, W.; Bowers, M. T.; Pagel, K.; von Helden, G. Phys. Chem. Chem. Phys. 2016, 18, 25474. https://doi.org/10.1039/C6CP04941A
  50. Siems, W. F.; Viehland, L. A.; Hill, H. H. Analyst 2016, 141, 6396. https://doi.org/10.1039/C6AN01353H
  51. Fernandez-Maestre, R.; Harden, C. S.; Ewing, R. G.; Crawford, C. L.; Hill, H. H. Analyst 2010, 135, 1433. https://doi.org/10.1039/b915202d
  52. Paglia, G.; Angel, P.; Williams, J. P.; Richardson, K.; Olivos, H. J.; Thompson, J. W.; Menikarachchi, L.; Lai, S.; Walsh, C.; Moseley, A.; Plumb, R. S.; Grant, D. F.; Palsson, B. O.; Langridge, J.; Geromanos, S.; Astarita, G. Anal. Chem. 2015, 87, 1137. https://doi.org/10.1021/ac503715v
  53. Paglia, G.; Williams, J. P.; Menikarachchi, L.; Thompson, J. W.; Tyldesley-Worster, R.; Halldorsson, S.; Rolfsson, O.; Moseley, A.; Grant, D.; Langridge, J.; Palsson, B. O.; Astarita, G. Anal. Chem. 2014, 86, 3985. https://doi.org/10.1021/ac500405x
  54. Marchand, A.; Livet, S.; Rosu, F.; Gabelica, V. Anal. Chem. 2017, 89, 12674. https://doi.org/10.1021/acs.analchem.7b01736
  55. Pringle, S. D.; Giles, K.; Wildgoose, J. L.; Williams, J. P.; Slade, S. E.; Thalassinos, K.; Bateman, R. H.; Bowers, M. T.; Scrivens, J. H. Int. J. Mass Spectrom. 2007, 261, 1. https://doi.org/10.1016/j.ijms.2006.07.021
  56. Kirk, A. T.; Raddatz, C. -R.; Zimmermann, S. Anal. Chem. 2017, 89, 1509. https://doi.org/10.1021/acs.analchem.6b03300
  57. Shvartsburg, A. A.; Clemmer, D. E.; Smith, R. D. Anal. Chem. 2010, 82, 8047. https://doi.org/10.1021/ac101992d
  58. D'Atri, V.; Porrini, M.; Rosu, F.; Gabelica, V. J. Mass Spectrom. 2015, 50, 711. https://doi.org/10.1002/jms.3590
  59. Lee, J. W.; Kim, H. I. Analyst 2015, 140, 661. https://doi.org/10.1039/C4AN01794C
  60. Shvartsburg, A. A.; Jarrold, M. F. Chem. Phys. Lett. 1996, 261, 86. https://doi.org/10.1016/0009-2614(96)00941-4
  61. Alexeev, Y.; Fedorov, D. G.; Shvartsburg, A. A. J. Phys. Chem. A 2014, 118, 6763. https://doi.org/10.1021/jp505012c
  62. Shvartsburg, A. A.; Liu, B.; Jarrold, M. F.; Ho, K. -M. J. Chem. Phys. 2000, 112, 4517. https://doi.org/10.1063/1.481042
  63. Anderson, S. E.; Bleiholder, C.; Brocker, E. R.; Stang, P. J.; Bowers, M. T. Int. J. Mass Spectrom. 2012, 330-332, 78. https://doi.org/10.1016/j.ijms.2012.08.024
  64. Bleiholder, C.; Contreras, S.; Bowers, M. T. Int. J. Mass Spectrom. 2013, 354-355, 275. https://doi.org/10.1016/j.ijms.2013.06.011
  65. Bleiholder, C.; Contreras, S.; Do, T. D.; Bowers, M. T. Int. J. Mass Spectrom. 2013, 345-347, 89. https://doi.org/10.1016/j.ijms.2012.08.027
  66. Bleiholder, C.; Wyttenbach, T.; Bowers, M. T. Int. J. Mass Spectrom. 2011, 308, 1. https://doi.org/10.1016/j.ijms.2011.06.014
  67. Kim, H.; Kim, H. I.; Johnson, P. V.; Beegle, L. W.; Beauchamp, J. L.; Goddard, W. A.; Kanik, I. Anal. Chem. 2008, 80, 1928. https://doi.org/10.1021/ac701888e
  68. Kim, H. I.; Kim, H.; Pang, E. S.; Ryu, E. K.; Beegle, L. W.; Loo, J. A.; Goddard, W. A.; Kanik, I. Anal. Chem. 2009, 81, 8289. https://doi.org/10.1021/ac900672a
  69. Campuzano, I.; Bush, M. F.; Robinson, C. V.; Beaumont, C.; Richardson, K.; Kim, H.; Kim, H. I. Anal. Chem. 2012, 84, 1026. https://doi.org/10.1021/ac202625t
  70. Siu, C. -K.; Guo, Y.; Saminathan, I. S.; Hopkinson, A. C.; Siu, K. W. M. J. Phys. Chem. B 2010, 114, 1204. https://doi.org/10.1021/jp910858z
  71. Lee, J. W.; Davidson, K. L.; Bush, M. F.; Kim, H. I. Analyst 2017, 142, 4289. https://doi.org/10.1039/C7AN01276D
  72. Lapthorn, C.; Pullen, F. S.; Chowdhry, B. Z.; Wright, P.; Perkins, G. L.; Heredia, Y. Analyst 2015, 140, 6814. https://doi.org/10.1039/C5AN00411J
  73. Lee, J. W.; Lee, H. H. L.; Davidson, K. L.; Bush, M. F.; Kim, H. I. manuscript in preparation.
  74. Thalassinos, K.; Slade, S. E.; Jennings, K. R.; Scrivens, J. H.; Giles, K.; Wildgoose, J.; Hoyes, J.; Bateman, R. H.; Bowers, M. T. Int. J. Mass Spectrom. 2004, 236, 55. https://doi.org/10.1016/j.ijms.2004.05.008
  75. Shvartsburg, A. A.; Smith, R. D. Anal. Chem. 2008, 80, 9689. https://doi.org/10.1021/ac8016295
  76. Giles, K.; Wildgoose, J. L.; Langridge, D. J.; Campuzano, I. Int. J. Mass Spectrom. 2010, 298, 10. https://doi.org/10.1016/j.ijms.2009.10.008
  77. Bush, M. F.; Campuzano, I. D. G.; Robinson, C. V. Anal. Chem. 2012, 84, 7124. https://doi.org/10.1021/ac3014498
  78. Thalassinos, K.; Grabenauer, M.; Slade, S. E.; Hilton, G. R.; Bowers, M. T.; Scrivens, J. H. Anal. Chem. 2009, 81, 248. https://doi.org/10.1021/ac801916h
  79. Mortensen, D. N.; Susa, A. C.; Williams, E. R. J. Am. Soc. Mass Spectrom. 2017, 28, 1282. https://doi.org/10.1007/s13361-017-1669-0
  80. Fernandez-Lima, F.; Kaplan, D. A.; Suetering, J.; Park, M. A. Int. J. Ion Mobil. Spectrom. 2011, 14, 93. https://doi.org/10.1007/s12127-011-0067-8
  81. Silveira, J. A.; Ridgeway, M. E.; Park, M. A. Anal. Chem. 2014, 86, 5624. https://doi.org/10.1021/ac501261h
  82. Hernandez, D. R.; DeBord, J. D.; Ridgeway, M. E.; Kaplan, D. A.; Park, M. A.; Fernandez-Lima, F. Analyst 2014, 139, 1913. https://doi.org/10.1039/C3AN02174B
  83. Swearingen, K. E.; Moritz, R. L. Expert Rev. Proteomics 2012, 9, 505. https://doi.org/10.1586/epr.12.50
  84. Schneider, B. B.; Nazarov, E. G.; Londry, F.; Vouros, P.; Covey, T. R. Mass Spectrom. Rev. 2016, 35, 687. https://doi.org/10.1002/mas.21453
  85. Sinatra, F. L.; Wu, T.; Manolakos, S.; Wang, J.; Evans-Nguyen, T. G. Anal. Chem. 2015, 87, 1685. https://doi.org/10.1021/ac503466s
  86. May, J. C.; McLean, J. A. Anal. Chem. 2015, 87, 1422. https://doi.org/10.1021/ac504720m
  87. Dodds, J. N.; May, J. C.; McLean, J. A. Anal. Chem. 2017, 89, 12176. https://doi.org/10.1021/acs.analchem.7b02827
  88. Hoaglund, C. S.; Valentine, S. J.; Sporleder, C. R.; Reilly, J. P.; Clemmer, D. E. Anal. Chem. 1998, 70, 2236. https://doi.org/10.1021/ac980059c
  89. Ibrahim, Y. M.; Garimella, S. V. B.; Prost, S. A.; Wojcik, R.; Norheim, R. V.; Baker, E. S.; Rusyn, I.; Smith, R. D. Anal. Chem. 2016, 88, 12152. https://doi.org/10.1021/acs.analchem.6b03027
  90. Keelor, J. D.; Zambrzycki, S.; Li, A.; Clowers, B. H.; Fernandez, F. M. Anal. Chem. 2017, 89, 11301. https://doi.org/10.1021/acs.analchem.7b01866
  91. Lee, J. W.; Park, M. H.; Ju, J. T.; Choi, Y. S.; Hwang, S. M.; Jung, D. J.; Kim, H. I. Mass Spectrom. Lett. 2016, 7, 16. https://doi.org/10.5478/MSL.2016.7.1.16
  92. Hoaglund-Hyzer, C. S.; Lee, Y. J.; Counterman, A. E.; Clemmer, D. E. Anal. Chem. 2002, 74, 992. https://doi.org/10.1021/ac010837s
  93. Fernandez-Lima, F. A.; Becker, C.; Gillig, K. J.; Russell, W. K.; Tichy, S. E.; Russell, D. H. Anal. Chem. 2009, 81, 618. https://doi.org/10.1021/ac801919n
  94. Tang, K.; Shvartsburg, A. A.; Lee, H. -N.; Prior, D. C.; Buschbach, M. A.; Li, F.; Tolmachev, A. V.; Anderson, G. A.; Smith, R. D. Anal. Chem. 2005, 77, 3330. https://doi.org/10.1021/ac048315a
  95. Ibrahim, Y. M.; Baker, E. S.; Danielson, W. F.; Norheim, R. V.; Prior, D. C.; Anderson, G. A.; Belov, M. E.; Smith, R. D. Int. J. Mass Spectrom. 2015, 377, 655. https://doi.org/10.1016/j.ijms.2014.07.034
  96. Baker, E. S.; Clowers, B. H.; Li, F.; Tang, K.; Tolmachev, A. V.; Prior, D. C.; Belov, M. E.; Smith, R. D. J. Am. Soc. Mass Spectrom. 2007, 18, 1176. https://doi.org/10.1016/j.jasms.2007.03.031
  97. Kelly, R. T.; Tolmachev, A. V.; Page, J. S.; Tang, K.; Smith, R. D. Mass Spectrom. Rev. 2010, 29, 294.
  98. Ibrahim, Y.; Tang, K.; Tolmachev, A. V.; Shvartsburg, A. A.; Smith, R. D. J. Am. Soc. Mass Spectrom. 2006, 17, 1299. https://doi.org/10.1016/j.jasms.2006.06.005
  99. Morsa, D.; Gabelica, V.; De Pauw, E. Anal. Chem. 2011, 83, 5775. https://doi.org/10.1021/ac201509p
  100. Merenbloom, S. I.; Flick, T. G.; Williams, E. R. J. Am. Soc. Mass Spectrom. 2012, 23, 553. https://doi.org/10.1007/s13361-011-0313-7
  101. Ridgeway, M. E.; Silveira, J. A.; Meier, J. E.; Park, M. A. Analyst 2015, 140, 6964. https://doi.org/10.1039/C5AN00841G
  102. Jeanne, K.; Fouque, D.; Garabedian, A.; Porter, J.; Baird, M.; Pang, X.; Williams, T. D.; Li, L.; Shvartsburg, A.; Fernandez-lima, F. Anal. Chem. 2017, 89, 11787. https://doi.org/10.1021/acs.analchem.7b03401
  103. Fernandez-Lima, F. A.; Kaplan, D. A.; Park, M. A. Rev. Sci. Instrum. 2011, 82, 126106. https://doi.org/10.1063/1.3665933
  104. Liu, F. C.; Kirk, S. R.; Bleiholder, C. Analyst 2016, 141, 3722. https://doi.org/10.1039/C5AN02399H
  105. Meier, F.; Beck, S.; Grassl, N.; Lubeck, M.; Park, M. A.; Raether, O.; Mann, M. J. Proteome Res. 2015, 14, 5378. https://doi.org/10.1021/acs.jproteome.5b00932
  106. Glaskin, R. S.; Ewing, M. A.; Clemmer, D. E. Anal. Chem. 2013, 85, 7003. https://doi.org/10.1021/ac4015066
  107. Merenbloom, S. I.; Glaskin, R. S.; Henson, Z. B.; Clemmer, D. E. Anal. Chem. 2009, 81, 1482. https://doi.org/10.1021/ac801880a
  108. Deng, L.; Ibrahim, Y. M.; Hamid, A. M.; Garimella, S. V. B.; Webb, I. K.; Zheng, X.; Prost, S. A.; Sandoval, J. A.; Norheim, R. V.; Anderson, G. A.; Tolmachev, A. V.; Baker, E. S.; Smith, R. D. Anal. Chem. 2016, 88, 8957. https://doi.org/10.1021/acs.analchem.6b01915
  109. Deng, L.; Webb, I. K.; Garimella, S. V. B.; Hamid, A. M.; Zheng, X.; Norheim, R. V.; Prost, S. A.; Anderson, G. A.; Sandoval, J. A.; Baker, E. S.; Ibrahim, Y. M.; Smith, R. D. Anal. Chem. 2017, 89, 4628. https://doi.org/10.1021/acs.analchem.7b00185
  110. Giles, K.; Ujma, J.; Wildgoose, J. L.; Green, M. R.; Richardson, K.; Langridge, D. J.; Tomczyk, N. 65th Annual American Society for Mass Spectrometry Conference, Indianapolis, IN, June 4-8, 2017, www.waters.com/posters (accessed November 2017).