DOI QR코드

DOI QR Code

MS-Based Technologies for the Study of Site-Specific Glycosylation

  • Kim, Unyong (Graduate School of Analytical Science and Technology, Chungnam National University) ;
  • Oh, Myung Jin (Graduate School of Analytical Science and Technology, Chungnam National University) ;
  • Lee, Jua (Graduate School of Analytical Science and Technology, Chungnam National University) ;
  • Hwang, Hee Yeon (Graduate School of Analytical Science and Technology, Chungnam National University) ;
  • An, Hyun Joo (Graduate School of Analytical Science and Technology, Chungnam National University)
  • Received : 2017.11.17
  • Accepted : 2017.12.18
  • Published : 2017.12.30

Abstract

Glycosylation, which is one of the most common post-translation modification (PTMs) of proteins, plays a variety of crucial roles in many cellular events and biotherapeutics. Recent advances have led to the development of various analytical methods employing a mass spectrometry for glycomic and glycoproteomic study. However, site-specific glycosylation analysis is still a relatively new area with high potential for technologies and method development. This review will cover current MS-based workflows and technologies for site-specific mapping of glycosylation ranging from glycopeptide preparation to MS analysis. Bioinformatic tools for comprehensive analysis of glycoprotein with high-throughput manner will be also included.

Keywords

References

  1. Apweiler, R.; Hermjakob, H.; Sharon, N. BBA-Gen. Subjects 1999, 1473, 4. https://doi.org/10.1016/S0304-4165(99)00165-8
  2. James, W. Dennis.; Maria, Granovsky.; Warren, C. E. BioEssays 1999, 21, 421.
  3. Moremen, K. W.; Tiemeyer, M.; Nairn, A. V. Nat. Rev. Mol. Cell Biol. 2012, 13, 448.
  4. Dwek, R. A.; Butters, T. D.; Platt, F. M.; Zitzmann, N. Nat. Rev. Drug Discov. 2002, 1, 65. https://doi.org/10.1038/nrd708
  5. Jefferis, R. Trends Pharmacol. Sci. 2009, 30, 356. https://doi.org/10.1016/j.tips.2009.04.007
  6. Li, H.; d'Anjou, M. Curr. Opin. Biotechnol. 2009, 20, 678. https://doi.org/10.1016/j.copbio.2009.10.009
  7. Lingg, N.; Zhang, P.; Song, Z.; Bardor, M. Biotechnol. J. 2012, 7, 1462. https://doi.org/10.1002/biot.201200078
  8. Marino, K.; Bones, J.; Kattla, J. J.; Rudd, P. M. Nat. Chem. Biol. 2010, 6, 713. https://doi.org/10.1038/nchembio.437
  9. Wuhrer, M.; Deelder, A. M.; Hokke, C. H. J. Chromatogr. B 2005, 825, 124. https://doi.org/10.1016/j.jchromb.2005.01.030
  10. Kolarich, D.; Lepenies, B.; Seeberger, P. H. Curr. Opin. Chem. Biol. 2012, 16, 214. https://doi.org/10.1016/j.cbpa.2011.12.006
  11. Park, Y.; Lebrilla, C. B. Mass Spectrom. Rev. 2005, 24, 232. https://doi.org/10.1002/mas.20010
  12. An, H. J.; Froehlich, J. W.; Lebrilla, C. B. Curr. Opin. Chem. Biol. 2009, 13, 421. https://doi.org/10.1016/j.cbpa.2009.07.022
  13. Seo, Y.; Kim, U.; Oh, M. J.; Yun, N. Y.; An, H. J. Mass Spectrom. Lett. 2015, 6, 53. https://doi.org/10.5478/MSL.2015.6.3.53
  14. Wuhrer, M.; Catalina, M. I.; Deelder, A. M.; Hokke, C. H. J. Chromatogr. B 2007, 849, 115. https://doi.org/10.1016/j.jchromb.2006.09.041
  15. Klampfl, C. W. Electrophoresis 2006, 27, 3. https://doi.org/10.1002/elps.200500523
  16. Zamfir, A.; Peter-Katalinic, J. Electrophoresis 2001, 22, 2448. https://doi.org/10.1002/1522-2683(200107)22:12<2448::AID-ELPS2448>3.0.CO;2-A
  17. Harazono, A.; Kawasaki, N.; Itoh, S.; Hashii, N.; Matsuishi-Nakajima, Y.; Kawanishi, T.; Yamaguchi, T. J. Chromatogr. B 2008, 869, 20. https://doi.org/10.1016/j.jchromb.2008.05.006
  18. Nilsson, J. Glycoconj. J. 2016, 33, 261. https://doi.org/10.1007/s10719-016-9649-3
  19. Plematl, A.; Demelbauer, U. M.; Josic, D.; Rizzi, A. Proteomics 2005, 5, 4025. https://doi.org/10.1002/pmic.200401238
  20. Tajiri, M.; Yoshida, S.; Wada, Y. Glycobiology 2005, 15, 1332. https://doi.org/10.1093/glycob/cwj019
  21. Zauner, G.; Koeleman, C. A.; Deelder, A. M.; Wuhrer, M. J. Sep. Sci. 2010, 33, 903. https://doi.org/10.1002/jssc.200900850
  22. Singh, C.; Zampronio, C. G.; Creese, A. J.; Cooper, H. J. J. Proteome Res. 2012, 11, 4517. https://doi.org/10.1021/pr300257c
  23. Pai, P. -J.; Hu, Y.; Lam, H. Anal. Chim. Acta 2016, 934, 152. https://doi.org/10.1016/j.aca.2016.05.049
  24. Zhang, Y.; Xie, X.; Zhao, X.; Tian, F.; Lv, J.; Ying, W.; Qian, X. J. Proteomics 2018, 170, 14. https://doi.org/10.1016/j.jprot.2017.09.014
  25. Scott, N. E.; Parker, B. L.; Connolly, A. M.; Paulech, J.; Edwards, A. V.; Crossett, B.; Falconer, L.; Kolarich, D.; Djordjevic, S. P.; Hojrup, P.; Packer, N. H.; Larsen, M. R.; Cordwell, S. J. Mol Cell Proteomics. 2011, 10, M000031-MCP201.
  26. Wang, D.; Hincapie, M.; Rejtar, T.; Karger, B. L. Anal. Chem. 2011, 83, 2029. https://doi.org/10.1021/ac102825g
  27. Olsen, J. V.; Macek, B.; Lange, O.; Makarov, A.; Horning, S.; Mann, M. Nat. Methods 2007, 4, 709. https://doi.org/10.1038/nmeth1060
  28. Thaysen-Andersen, M.; Packer, N. H. BBA-Proteins and Proteom. 2014, 1844.
  29. Kolarich, D.; Jensen, P. H.; Altmann, F.; Packer, N. H. Nat. Protoc. 2012, 7, 1285. https://doi.org/10.1038/nprot.2012.062
  30. Leymarie, N.; Griffin, P. J.; Jonscher, K.; Kolarich, D.; Orlando, R.; McComb, M.; Zaia, J.; Aguilan, J.; Alley, W. R.; Altmann, F.; Ball, L. E.; Basumallick, L.; Bazemore-Walker, C. R.; Behnken, H.; Blank, M. A.; Brown, K. J.; Bunz, S. -C.; Cairo, C. W.; Cipollo, J. F.; Daneshfar, R.; Desaire, H.; Drake, R. R.; Go, E. P.; Goldman, R.; Gruber, C.; Halim, A.; Hathout, Y.; Hensbergen, P. J.; Horn, D. M.; Hurum, D.; Jabs, W.; Larson, G.; Ly, M.; Mann, B. F.; Marx, K.; Mechref, Y.; Meyer, B.; Moginger, U.; Neususs, C.; Nilsson, J.; Novotny, M. V.; Nyalwidhe, J. O.; Packer, N. H.; Pompach, P.; Reiz, B.; Resemann, A.; Rohrer, J. S.; Ruthenbeck, A.; Sanda, M.; Schulz, J. M.; Schweiger-Hufnagel, U.; Sihlbom, C.; Song, E.; Staples, G. O.; Suckau, D.; Tang, H.; Thaysen-Andersen, M.; Viner, R. I.; An, Y.; Valmu, L.; Wada, Y.; Watson, M.; Windwarder, M.; Whittal, R.; Wuhrer, M.; Zhu, Y.; Zou, C. Mol. Cell. Proteomics 2013, 12, 2935. https://doi.org/10.1074/mcp.M113.030643
  31. Faid, V.; Denguir, N.; Chapuis, V.; Bihoreau, N.; Chevreux, G. Proteomics 2014, 14, 2460. https://doi.org/10.1002/pmic.201400038
  32. Jiang, J.; Tian, F.; Cai, Y.; Qian, X. H.; Costello, C. E.; Ying, W. T. Anal. Bioanal. Chem. 2014, 406, 6265. https://doi.org/10.1007/s00216-014-8037-8
  33. Ohta, M.; Kawasaki, N.; Itoh, S.; Hayakawa, T. Biologicals 2002, 30, 235. https://doi.org/10.1006/biol.2002.0339
  34. Hua, S.; Nwosu, C. C.; Strum, J. S.; Seipert, R. R.; An, H. J.; Zivkovic, A. M.; German, J. B.; Lebrilla, C. B. Anal. Bioanal. Chem. 2012, 403, 1291. https://doi.org/10.1007/s00216-011-5109-x
  35. Hua, S.; Hu, C. Y.; Kim, B. J.; Totten, S. M.; Oh, M. J.; Yun, N.; Nwosu, C. C.; Yoo, J. S.; Lebrilla, C. B.; An, H. J. J. Proteome Res. 2013, 12, 4414. https://doi.org/10.1021/pr400442y
  36. Plomp, R.; Hensbergen, P. J.; Rombouts, Y.; Zauner, G.; Dragan, I.; Koeleman, C. A.; Deelder, A. M.; Wuhrer, M. J. Proteome Res. 2014, 13, 536. https://doi.org/10.1021/pr400714w
  37. Alvarez-Manilla, G.; Atwood, J.; Guo, Y.; Warren, N. L.; Orlando, R.; Pierce, M. J. Proteome Res. 2006, 5, 701. https://doi.org/10.1021/pr050275j
  38. Joenvaara, S.; Ritamo, I.; Peltoniemi, H.; Renkonen, R. Glycobiology 2008, 18, 339. https://doi.org/10.1093/glycob/cwn013
  39. Hemstrom, P.; Irgum, K. J. Sep. Sci. 2006, 29, 1784. https://doi.org/10.1002/jssc.200600199
  40. Groleau, P. E.; Desharnais, P.; Cote, L.; Ayotte, C. J. Mass Spectrom. 2008, 43, 924. https://doi.org/10.1002/jms.1439
  41. Huddleston, M. J.; Bean, M. F.; Carr, S. A. Anal. Chem. 1993, 65, 877. https://doi.org/10.1021/ac00055a009
  42. Cointe, D.; Beliard, R.; Jorieux, S.; Leroy, Y.; Glacet, A.; Verbert, A.; Bourel, D.; Chirat, F. Glycobiology 2000, 10, 511. https://doi.org/10.1093/glycob/10.5.511
  43. Thaysen-Andersen, M.; Wilkinson, B. L.; Payne, R. J.; Packer, N. H. Electrophoresis 2011, 32, 3536. https://doi.org/10.1002/elps.201100294
  44. Dam, S.; Thaysen-Andersen, M.; Stenkjær, E.; Lorentzen, A.; Roepstorff, P.; Packer, N. H.; Stougaard, J. J. Proteome Res. 2013, 12, 3383. https://doi.org/10.1021/pr400224s
  45. Thaysen-Andersen, M.; Packer, N. H. BBA-Proteins Proteom. 2014, 1844, 1437. https://doi.org/10.1016/j.bbapap.2014.05.002
  46. Hua, S.; Oh, M. J.; Ozcan, S.; Seo, Y. S.; Grimm, R.; An, H. J. TrAC- Trends Anal. Chem. 2015, 68, 18. https://doi.org/10.1016/j.trac.2015.02.004
  47. Sun, B.; Ranish, J. A.; Utleg, A. G.; White, J. T.; Yan, X.; Lin, B.; Hood, L. Mol. Cell. Proteomics 2007, 6, 141. https://doi.org/10.1074/mcp.T600046-MCP200
  48. Stadlmann, J.; Taubenschmid, J.; Wenzel, D.; Gattinger, A.; Durnberger, G.; Dusberger, F.; Elling, U.; Mach, L.; Mechtler, K.; Penninger, J. M. Nature 2017, 549, 538. https://doi.org/10.1038/nature24015
  49. Parker, B. L.; Thaysen-Andersen, M.; Solis, N.; Scott, N. E.; Larsen, M. R.; Graham, M. E.; Packer, N. H.; Cordwell, S. J. J. Proteome Res. 2013, 12, 5791. https://doi.org/10.1021/pr400783j
  50. Halim, A.; Nilsson, J.; Ruetschi, U.; Hesse, C.; Larson, G. Mol. Cell. Proteomics 2012, 11, 1. https://doi.org/10.1074/mcp.E112.019653
  51. Halim, A.; Ruetschi, U.; Larson, G. r.; Nilsson, J. J. Proteome Res. 2013, 12, 573. https://doi.org/10.1021/pr300963h
  52. Jensen, L. J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; Bork, P.; von Mering, C. Nucleic Acids Res. 2009, 37, D412. https://doi.org/10.1093/nar/gkn760
  53. Ueda, K. Proteomics Clin. Appl. 2013, 7, 607.
  54. Tian, Y.; Zhang, H. Proteomics Clin. Appl. 2010, 4, 124. https://doi.org/10.1002/prca.200900161
  55. Cancilla, M. T.; Wong, A. W.; Voss, L. R.; Lebrilla, C. B. Anal. Chem. 1999, 71, 3206. https://doi.org/10.1021/ac9813484
  56. Hua, S.; Hu, C. Y.; Kim, B. J.; Totten, S. M.; Oh, M. J.; Yun, N.; Nwosu, C. C.; Yoo, J. S.; Lebrilla, C. B.; An, H. J. J. Proteome Res. 2013, 12, 4414. https://doi.org/10.1021/pr400442y
  57. Mayampurath, A.; Yu, C. -Y.; Song, E.; Balan, J.; Mechref, Y.; Tang, H. Anal. Chem. 2014, 86, 453. https://doi.org/10.1021/ac402338u
  58. Anonsen, J. H.; Vik, A.; Egge-Jacobsen, W.; Koomey, M. J. Proteome Res. 2012, 11, 5781. https://doi.org/10.1021/pr300584x
  59. Yin, X.; Bern, M.; Xing, Q.; Ho, J.; Viner, R.; Mayr, M. Mol. Cell. Proteomics 2013, 12, 956. https://doi.org/10.1074/mcp.M112.024018
  60. Trinidad, J. C.; Schoepfer, R.; Burlingame, A. L.; Medzihradszky, K. F. Mol. Cell. Proteomics 2013, 12, 3474. https://doi.org/10.1074/mcp.M113.030007
  61. Thannhauser, T. W.; Shen, M.; Sherwood, R.; Howe, K.; Fish, T.; Yang, Y.; Chen, W.; Zhang, S. Electrophoresis 2013, 34, 2417. https://doi.org/10.1002/elps.201200656
  62. Nilsson, J.; Ruetschi, U.; Halim, A.; Hesse, C.; Carlsohn, E.; Brinkmalm, G.; Larson, G. Nat. Methods 2009, 6, 809. https://doi.org/10.1038/nmeth.1392
  63. Uematsu, R.; Furukawa, J. -i.; Nakagawa, H.; Shinohara, Y.; Deguchi, K.; Monde, K.; Nishimura, S. -I. Mol. Cell. Proteomics 2005, 4, 1977. https://doi.org/10.1074/mcp.M500203-MCP200
  64. Nwosu, C. C.; Seipert, R. R.; Strum, J. S.; Hua, S. S.; An, H. J.; Zivkovic, A. M.; German, B. J.; Lebrilla, C. B. J. Proteome Res. 2011, 10, 2612. https://doi.org/10.1021/pr2001429
  65. Hong, Q.; Ruhaak, L. R.; Stroble, C.; Parker, E.; Huang, J.; Maverakis, E.; Lebrilla, C. B. J. Proteome Res. 2015, 14, 5179. https://doi.org/10.1021/acs.jproteome.5b00756
  66. Jebanathirajah, J.; Steen, H.; Roepstorff, P. J. Am. Soc. Mass. Spectrom. 2003, 14, 777. https://doi.org/10.1016/S1044-0305(03)00263-0
  67. Hu, H.; Khatri, K.; Klein, J.; Leymarie, N.; Zaia, J. Glycoconj. J. 2016, 33, 285. https://doi.org/10.1007/s10719-015-9633-3
  68. Bykova, N. V.; Rampitsch, C.; Krokhin, O.; Standing, K. G.; Ens, W. Anal. Chem. 2006, 78, 1093. https://doi.org/10.1021/ac0512711
  69. Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 9528. https://doi.org/10.1073/pnas.0402700101
  70. Wiesner, J.; Premsler, T.; Sickmann, A. Proteomics 2008, 8, 4466. https://doi.org/10.1002/pmic.200800329
  71. Kim, M. -S.; Pandey, A. Proteomics 2012, 12, 530. https://doi.org/10.1002/pmic.201100517
  72. Hakansson, K.; Cooper, H. J.; Emmett, M. R.; Costello, C. E.; Marshall, A. G.; Nilsson, C. L. Anal. Chem. 2001, 73, 4530. https://doi.org/10.1021/ac0103470
  73. Leymarie, N.; Zaia, J. Anal. Chem. 2012, 84, 3040. https://doi.org/10.1021/ac3000573
  74. Yu, Q.; Wang, B.; Chen, Z.; Urabe, G.; Glover, M. S.; Shi, X.; Guo, L.-W.; Kent, K. C.; Li, L. J. Am. Soc. Mass. Spectrom. 2017, 28, 1751. https://doi.org/10.1007/s13361-017-1701-4
  75. Ko, B. J.; Brodbelt, J. S. Int. J. Mass spectrom. 2015, 377, 385. https://doi.org/10.1016/j.ijms.2014.07.032
  76. Aboufazeli, F.; Kolli, V.; Dodds, E. D. J. Am. Soc. Mass Spectrom. 2015, 26, 587. https://doi.org/10.1007/s13361-014-1070-1
  77. An, H. J.; Lebrilla, C. B. Mass Spectrom. Rev. 2011, 30, 560. https://doi.org/10.1002/mas.20283
  78. Oh, M. J.; Hua, S.; Kim, U.; Kim, H. J.; Lee, J.; Kim, J.- H.; An, H. J. Bioanalysis 2016, 8, 711. https://doi.org/10.4155/bio.16.20
  79. Ceroni, A.; Maass, K.; Geyer, H.; Geyer, R.; Dell, A.; Haslam, S. M. J. Proteome Res. 2008, 7, 1650. https://doi.org/10.1021/pr7008252
  80. Lohmann, K. K.; von der Lieth, C. W. Proteomics 2003, 3, 2028. https://doi.org/10.1002/pmic.200300505
  81. Li, J. Functional Glycomics: Methods and Protocols. Humana Press: Totowa, NJ, 2010.
  82. Catherine A. Cooper; Elisabeth Gasteiger; Packer, N. H. Proteomics 2001, 1, 340. https://doi.org/10.1002/1615-9861(200102)1:2<340::AID-PROT340>3.0.CO;2-B
  83. Wu, Y.; Mechref, Y.; Klouckova, I.; Mayampurath, A.; Novotny, M. V.; Tang, H. Rapid Commun. Mass Spectrom. 2010, 24, 965. https://doi.org/10.1002/rcm.4474
  84. Lee, L. Y.; Moh, E. S.; Parker, B. L.; Bern, M.; Packer, N. H.; Thaysen-Andersen, M. J. Proteome Res. 2016, 15, 3904. https://doi.org/10.1021/acs.jproteome.6b00438
  85. Strum, J. S.; Nwosu, C. C.; Hua, S.; Kronewitter, S. R.; Seipert, R. R.; Bachelor, R. J.; An, H. J.; Lebrilla, C. B. Anal. Chem. 2013, 85, 5666. https://doi.org/10.1021/ac4006556
  86. Chandler, K. B.; Pompach, P.; Goldman, R.; Edwards, N. J. Proteome Res. 2013, 12, 3652. https://doi.org/10.1021/pr400196s
  87. Park, G. W.; Kim, J. Y.; Hwang, H.; Lee, J. Y.; Ahn, Y. H.; Lee, H. K.; Ji, E. S.; Kim, K. H.; Jeong, H. K.; Yun, K. N.; Kim, Y. S.; Ko, J. H.; An, H. J.; Kim, J. H.; Paik, Y. K.; Yoo, J. S. Sci. Rep. 2016, 6, 21175. https://doi.org/10.1038/srep21175
  88. Lih, T. M.; Choong, W. K.; Chen, C. C.; Cheng, C. W.; Lin, H. N.; Chen, C. T.; Chang, H. Y.; Hsu, W. L.; Sung, T. Y. Nucleic Acids Res. 2016, 44, w575. https://doi.org/10.1093/nar/gkw254
  89. Lynn, K. S.; Chen, C. C.; Lih, T. M.; Cheng, C. W.; Su, W. C.; Chang, C. H.; Cheng, C. Y.; Hsu, W. L.; Chen, Y. J.; Sung, T. Y. Anal. Chem. 2015, 87, 2466. https://doi.org/10.1021/ac5044829
  90. Liu, M. Q.; Zeng, W. F.; Fang, P.; Cao, W. Q.; Liu, C.; Yan, G. Q.; Zhang, Y.; Peng, C.; Wu, J. Q.; Zhang, X. J.; Tu, H. J.; Chi, H.; Sun, R. X.; Cao, Y.; Dong, M. Q.; Jiang, B. Y.; Huang, J. M.; Shen, H. L.; Wong, C. C. L.; He, S. M.; Yang, P. Y. Nat. Commun. 2017, 8, 438. https://doi.org/10.1038/s41467-017-00535-2