DOI QR코드

DOI QR Code

Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins Bearing Phenylcyclohexyl Mesogenic Moieties

Phenylcyclohexyl mesogenic moieties를 함유한 고 열전도성 액정성 에폭시 수지의 개발

  • Jeong, Iseul (Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Youngsu (Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Goh, Munju (Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST))
  • Received : 2017.08.24
  • Accepted : 2017.12.29
  • Published : 2017.12.31

Abstract

The new liquid crystalline (LC) epoxy was designed by substituting the phenylcyclohexyl (PCH) mesogen moiety with an alkyl chain at the 2,5 position of the diglycidyl terephthalate. The mesomorphic properties were evaluated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). All LC epoxy derivatives exhibited an enantiotropic smectic phase upon heating and cooling process. The LC phase temperature range was widened by mixing the eutectic mixture of LC epoxies. Interestingly, the cured LC epoxy exhibited the highest thermal conductivity of $0.4W{\cdot}m^{-1}{\cdot}K^{-1}$. The novel LC epoxy with high thermal conductivity might be used as a composite material for electronic and display devices.

Phenylcyclohexyl (PCH) mesogen을 diglycidyl terephthalate의 2,5 위치에 치환시킨 새로운 액정성 에폭시 수지를 설계하였다. 이 물질의 액정성은 DSC(differential scanning calorimetry)와 POM(polarized optical microscopy)으로 분석하였다. 모든 액정성 에폭시 유도체는 가열 및 냉각 시에 모두 smectic상을 나타내는 enantiotropic한 성질을 나타내었다. 액정성 에폭시의 공융 혼합물을 통하여 액정 온도구간을 확장시켰다. 경화된 신규 액정성 에폭시는 $0.4W{\cdot}m^{-1}{\cdot}K^{-1}$의 높은 열전도도를 나타냈다. 높은 열전도도를 갖는 신규 액정성 에폭시는 전자 및 디스플레이용 복합소재로 이용될 것으로 기대된다.

Keywords

References

  1. (Book) Pilato, L.A., and Michno, M.J., Advanced Composite Material, Springer Science & Business Media, Germany, 1994.
  2. (International Journal) Yu, J., Jung, J., Choi, Y., Choi, J., Yu, J., Lee, J., You, N., and Goh, M., "Enhancement of the Crosslink Density, Glass Transition Temperature, and Strength of Epoxy Resin by Using Functionalized Graphene Oxide Co-curing Agents," Polymer Chemistry, Vol. 7, No. 1, 2016, pp. 36-43. https://doi.org/10.1039/C5PY01483B
  3. (International Journal) Choi, J.H., Song, H.J., Jung, J., Yu, J.W., You, N., and Goh, M., "Effect of Crosslink Density on Thermal Conductivity of Epoxy/carbon Nanotube Nanocomposites," Journal of Applied Polymer Science, Vol. 134, No. 4, 2017, 44253(pp. 1-7).
  4. (International Journal) Gao, J., Huo, L., and Du, Y., "Nonisothermal Cure Kinetics and Diffusion Effect of Liquid-crystalline Epoxy Sulfonyl bis(1,4-phenylene)bis[4-(2,3-epoxypropyloxy) benzoate] Resin with Aromatic Diamine," Journal of Applied Polymer Science, Vol. 125, No. 5, 2012, pp. 3329-3334. https://doi.org/10.1002/app.33877
  5. (International Journal) Hansen, D., and Bernier, G.A., "Thermal Conductivity of Polyethylene: The Effects of Crystal Size, Density and Orientation on the Thermal Conductivity," Polymer Engineering and Science, Vol. 12, No. 3, 1972, pp. 204-208. https://doi.org/10.1002/pen.760120308
  6. (International Journal) Akatsuka, M., and Takezawa, Y., "Study of High Thermal Conductive Epoxy Resins Containing Controlled High-order Structures," Journal of Applied Polymer Science, Vol. 89, No. 9, 2003, pp. 2464-2467. https://doi.org/10.1002/app.12489
  7. (International Journal) Cao, B.Y., Li, Y.W., Koing, J., Chen, H., Xu, Y., Yung, K.L., and Cai, A., "High Thermal Conductivity of Polyethylene Nanowire Arrays Fabricated by an Improved Nanoporous Template Wetting Technique," Polymer, Vol. 52, No. 8, 2011, pp. 1711-1715. https://doi.org/10.1016/j.polymer.2011.02.019
  8. (International Journal) Kim, G., Lee, D., Shanker, A., Shao, L., Kwon, M.S., Gidley, D., Kim, J., and Pipe, K.P., "High Thermal Conductivity in Amorphous Polymer Blends by Engineered Interchain Interactions," Nature Materials, Vol. 14, 2014, pp. 295-300.
  9. (International Journal) Kim, Y., Yeo, H., You, N.H., Jang, S.G., Ahn, S., Jeong, K.U., Lee, S.H., and Goh, M., "Highly Thermal Conductive Resins Formed from Wide-temperature-range Eutectic Mixtures of Liquid Crystalline Epoxies Bearing Diglycidyl Moieties at the Side Positions," Polymer Chemistry, Vol. 8, 2017, pp. 2806-2814. https://doi.org/10.1039/C7PY00243B
  10. (International Journal) Chien, L.C., Lin, C., Fredley, S., and McCargar, J.W., "Side-chain Liquid-crystal Epoxy Polymer Binders for Polymer-dispersed Liquid Crystals," Macromolecules, Vol. 25, 1992, pp. 133-137. https://doi.org/10.1021/ma00027a022
  11. (International Journal) Mallon, J.J., and Adams, P.M., "Synthesis and Characterization of Novel Epoxy Monomers and Liquid Crystal Thermosets," Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 31, 1993, pp. 2249-2260. https://doi.org/10.1002/pola.1993.080310908
  12. (International Journal) Ortiz, C., Kim, R., Rodighiero, E., Ober, C.K., and Kramer, E.J., "Deformation of a Polydomain, Liquid Crystalline Epoxy-Based Thermoset," Macromolecules, Vol. 31, 1998, pp. 4074-4088. https://doi.org/10.1021/ma971439n
  13. (International Journal) Lee, J.Y., Jang, J., Hong, S.M., Hwang, S.S., and Kim, K.U., "Relationship between the Structure of the Bridging Group and Curing of Liquid Crystalline Epoxy Resins," Polymer, Vol. 40, 1999, pp. 3197-3202. https://doi.org/10.1016/S0032-3861(98)00531-X
  14. (International Journal) Harada, M., Ochi, M., Tobita, M., Kimura, T., Ishigaki, T., Shimoyama, N., and Aoki, H., "Thermal-conductivity Properties of Liquid-crystalline Epoxy Resin Cured under a Magnetic Field," Journal of Polymer Science: Part B: Polymer Physics, Vol. 41, 2003, pp. 1739-1743. https://doi.org/10.1002/polb.10531
  15. (International Journal) Li, Y., Badrinarayanan, P., and Kessler, M.R., "Liquid Crystalline Epoxy Resin Based on Biphenyl Mesogen: Thermal Characterization," Polymer, Vol. 54, No. 12, 2013, pp. 3017-3025. https://doi.org/10.1016/j.polymer.2013.03.043
  16. (International Journal) Li, Y., and Kessler, M.R., "Liquid Crystalline Epoxy Resin Based on Biphenyl Mesogen: Effect of Magnetic Field Orientation during Cure," Polymer, Vol. 54, No. 21, 2013, pp. 5741-5746. https://doi.org/10.1016/j.polymer.2013.08.005
  17. (International Journal) Harada, M., Hamaura, N., Ochi, M., and Agari, Y., "Thermal Conductivity of Liquid Crystalline Epoxy/BN filler Composites having Ordered Network Structure," Composites: Part B, Vol. 55, 2013, pp. 306-313. https://doi.org/10.1016/j.compositesb.2013.06.031
  18. (Book) Stauffer, D., and Aharony, A., Introduction to Percolation Theory: Revised Second Edition, Taylor & Francis, UK, 1994.
  19. (Korean Journal) Kim, Y., Jung, J., Yeo, H., You, N.H., Ahn, S., Lee, S.H., and Goh, M., "Development of Highly Thermal Conductivity Liquid Crystalline Epoxy Resins for High Thermal Dissipation Composites," Composites Research, Vol. 30, No. 1, 2017, pp. 1-6. https://doi.org/10.7234/composres.2017.30.1.001