DOI QR코드

DOI QR Code

Comparison of Bacterial Biomass and Community of Granular Activated Carbon with or without UV Pre-treatment Process

UV 전처리 유무에 따른 입상활성탄의 세균 생체량 및 군집 구조 비교

  • 임재원 (연세대학교 보건과학대학 임상병리학과/대구한의대학교 의과학대학 임상병리학과) ;
  • 김서용 (연세대학교 보건과학대학 임상병리학과) ;
  • 김정용 (연세대학교 보건과학대학 임상병리학과) ;
  • 김태우 (연세대학교 보건과학대학 임상병리학과)
  • Received : 2017.08.23
  • Accepted : 2017.11.07
  • Published : 2017.12.28

Abstract

Biolgical activated carbon (BAC) processes are known to effectively remove organic pollutants in raw water, and biomass and attached bacterial species play an important role in removing process. In the present study, changes of bacterial biomass in granular activated carbon (GAC) process according to the depth and operating period were investigated. In addition, changes of bacterial biomass were also confirmed after UV exposure prior to the GAC process. Results from this this study showed that the bacterial biomass was decreased dependently according to the depth of GAC process. In case of UV pre-treatment, the bacterial biomass was declined significantly over the period of operation. However, changes in bacterial community were not shown during operation period without UV pre-treatment process. In conclusion, findings from this study may provide the useful information about the management of BAC process.

생물활성탄 공정은 수처리 과정에서 유기 오염물질을 효과적으로 제거하는 것으로 알려져 있으며, 활성탄에 부착된 세균의 생체량과 종은 오염물질 제거 과정에서 중요한 역할을 한다. 본 연구에서는 입상활성탄 공정에서 활성탄조의 깊이와 가동 기간에 따른 세균 생체량의 변화에 대해 확인해 보았다. 또한 입상활성탄공정 전단에 자외선 (UV) 공정 전처리를 하였을 때 세균 생체량의 변화를 확인하였다. 결과를 살펴보면 활성탄조의 깊이가 깊어질수록 세균 생체량이 감소하는 것을 확인하였다. 그리고 UV 공정 전처리를 한 경우, 공정 기간이 증가할수록 세균 생체량이 감소하는 것을 확인하였다. 그러나, UV 공정 전처리를 하지 않은 경우에는 공정 기간에 따른 세균 생체량의 변화가 나타나지 않았다. 본 연구 결과를 토대로 수처리 실공정에서 생물활성탄 공정 관리에 대한 유용한 정보를 제공할 것이라 여겨진다.

Keywords

References

  1. Y. Cho, J. Lim, D. Baek, S. H. Lee, I. S. Lee, H. Lee, D. Park, D. Jung, and T. U. Kim, "Development of techniques for evaluating the virus removal rate using adenovirus," J. Korean Soc. Water & Wastewater, Vol.29, pp.633-641, 2015. https://doi.org/10.11001/jksww.2015.29.6.633
  2. J. W. Choi, K. S. Hyun, and Y. T. Kang, "Characteristics of granular activated carbon and biological activated carbon treatment processes for improvement of drinking water quality," J. Korean Soc. Water Environ., Vol.16, pp.191-198, 2000.
  3. L. Ho, D. Hoefel, F. Bock, C. P. Saint, and G. Newcombe, "Biodegradation rates of 2-methylisoboneol and geosmin through sand filters and in bioreactors," Chemosphere, Vol.66, pp.2210-2218, 2007. https://doi.org/10.1016/j.chemosphere.2006.08.016
  4. M. J. Shim, J. Lim, and T. U. Kim, "Evaluation of microbes through microfiltration within the water treatment processes," Korean J. Clin. Lab. Sci., Vol.48, pp.230-236, 2016. https://doi.org/10.15324/kjcls.2016.48.3.230
  5. C. J. Vorosmarty, P. B. McLntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann, and P. M. Davies, "Global threats to human water security and river biodiversity," Nature, Vol.467, pp.555-561, 2010. https://doi.org/10.1038/nature09440
  6. H. J. Son, J. H. Jung, J. S. Roh, and P. J. Yu, "Removal characteristics of sulfonamide antibiotic compounds in biological activated carbon process," J. Korean Soc. Environ. Eng., Vol.31, pp.96-101, 2009.
  7. D. M. Son, H. J. Son, H. J. Lee, and L. S. Kang, "Removal of geosmin and 2-MIB using biological activated carbon process," J. Korean Soc. Water & Wastewater, Vol.23, pp.189-198, 2009.
  8. H. J. Son, S. W. Kang, H. S. Yoom, D. C. Ryu, and M. G. Cho, "Evaluation of biodegradation kinetic in biological activated carbon (BAC) process for drinking waste treatment : Effects of EBCT and water temperature," J. Korean Soc. Environ. Eng., Vol.37, pp.404-411, 2015. https://doi.org/10.4491/KSEE.2015.37.7.404
  9. S. S. Madaeni, A. G. Fane, and G. S. Grohmann, "Virus removal from water and wastewater using membrane," J. Membrane Sci., Vol.102, pp.65-75, 1995. https://doi.org/10.1016/0376-7388(94)00252-T
  10. C. C. Taedosiu, M. D. Kennedy, H. A. Straten, and J. C. Schippers, "Evaluation of secondary refinery effluent treatment using ultrafiltration membranes," Water Res., Vol.33, pp.2172-2180, 1999. https://doi.org/10.1016/S0043-1354(98)00433-3
  11. H. Bach, S. Tarre, and M. Green, "Post treatment of groundwater denitrification fluidized bed reactor effluents to achieve drinking water quality," J. Industrial Microbiol. & Biotechn., Vol.20, pp.354-350, 1998. https://doi.org/10.1038/sj.jim.2900535
  12. P. G. Servais, P. Billen, P. Bouillot, and M. Benezet, "A pilot study of biological GAC filtration in drinking water treatment," J. Wat. Suppl.; Res. & Technol. Aqua., Vol.41, pp.163-168, 1992.
  13. M. Asami, T. Aizawa, T. Morioka, W. Nishijima, A. Tabata, and Y. Magara, "Bromate removal during transition from new granular activated carbon (GAC) to biological activated carbon (BAC)," Water Res., Vol.33, pp.2797-2804, 1999. https://doi.org/10.1016/S0043-1354(98)00504-1
  14. J. Park, S. Takizawa, H. Katayama and S. Ohgaki, "Biofilter pretreatment for the control of microfiltration membrane fouling," Water Sci. & Technol.: Water Suppl., Vol.2, pp.193-199, 2002.
  15. J. S. Roh, H. J. Son, H. K. Park, and Y. D. Hwang, "Changes in characteristics of biodegradable organic matter removal by advanced water treatment process," J. Korean Soc. Environ. Eng., Vol.25, pp.909-919, 2003.
  16. P. Servais, G. Billen, and P. Bouillot, "Biological colonization of granular activated carbon filters in drinking-water treatment," J. Environ. Eng., Vol.120, pp.888-899, 1994. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:4(888)
  17. H. S. Son, H. J. Son, G. T. Park, and S. J. Lee, "Analysis of attached bacterial community of bio-logical activated carbon process using FISH," J. Environ. Sci., Vol.22, pp.25-35, 2013.
  18. A. C. Fonseca, R. S. Summers, and M. T. Hernandez, "Comparative measurements of microbial activity in drinking water biofilters," Water Res., Vol.35, pp.3817-3824, 2001. https://doi.org/10.1016/S0043-1354(01)00104-X
  19. I. H. Kim, A. M. Wahid, and H. Tanaka, "Applicability investigation of E.coli, RNA and DNA bacteriophages for possible indicator microorganisms based on the inactivation effectiveness by UV," J. Kor. Soc. Environ. Eng., Vol.32, pp.1063-1068, 2010.
  20. S. Velten, F. Hammes, M. Boller, and T. Egli, "Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination," Water Res., Vol.41, pp.1973-1983, 2007. https://doi.org/10.1016/j.watres.2007.01.021
  21. S. A. Wakelin, D. W. Page, P. Pavelic, A. L. Gregg, and P. J. Dillon, "Rich microbial communities inhabit water treatment biofilters and are differentially affected by filter type and sampling depth," Water Sci. & Technol. Water Suppl., Vol.10, pp.145-156, 2010. https://doi.org/10.2166/ws.2010.570
  22. H. F. Ridgway and B. H. Olson, "Scanning electron microscope evidence for bacterial colonization of a drinking-water distribution system," Appl. Environ. Microb., Vol.41, pp.274-287, 1981.
  23. H. J. Son, H. K. Park, S. A. Lee, E. Y. Jung, and C. W. Jung, "The characteristics of microbial community for biological activated carbon in water treatment plant," J. Kor. Soc. Environ. Eng., Vol.27, pp.1311-1320, 2005.
  24. C. Falkentoft, M. E. Muller, P. Amz, P. Harremoes, H. Mosbak, P. A. Wwlderer, and S. Wuertz, "population changes in a biofilm reactor for phosphorus removal as evidenced by the use of FISH," Water Res., Vol.36, pp.491-500, 2002. https://doi.org/10.1016/S0043-1354(01)00231-7
  25. H. J. Son, S. J. Yoo, J. S. Roh, and P. J. Yoo, "Biological activated carbon (BAC) process in water treatment," J. Kor. Soc. Environ. Eng., Vol.31, pp.308-322, 2009.
  26. H. S. Son, C. W. Jung, Y. I. Choi, G. Lee, and H. J. Son, "Evaluation of biomass of biofilm and biodegradation of dissolved organic matter according to changes of operation times and bed depths in BAC processes," J. Env. Sci. Intern., Vol.23, pp.1101-1109, 2014. https://doi.org/10.5322/JESI.2014.23.6.1101
  27. M. Cho, W. Jeong, and J. Yoon, "Application of UV technology for surface disinfection," J. Kor. Soc. Environ. Eng., Vol.29, pp.1020-1026, 2007.
  28. R. M. Alberici, M. C. Canela, M. N. Eberlin, and W. F. Jardin, "Catalyst deactivation in the gas phase destruction of nitrogen-containing organic compounds using $TiO_2$/UV-VIS," Applied Catalysis B: Environmental, Vol.30, pp.389-397, 2001. https://doi.org/10.1016/S0926-3373(00)00256-3
  29. J. Y. Jeong and J. S. Jurng, "Photodegradation of gaseous toluene using short-wavelength UV/$TiO_2$ and treatment of decomposition products by wet scrubber," J. Environ. Sci. Int., Vol.16, pp.433-440, 2007. https://doi.org/10.5322/JES.2007.16.4.433
  30. M. Herzberg, C. G. Dosoretz, S. Tarre, and M. Green, "Patchy biofilm coverage can explain the potential advantage of BGAC reactors," Environ. Sci. Technol., Vol.37, pp.4247-4280, 2003.
  31. K. Yapsakli and F. Cecen, "Effect of type granular activated carbon on DOC biodegradation in biological activated carbon filters," Process Biochem., Vol.45, pp.355-362, 2010. https://doi.org/10.1016/j.procbio.2009.10.005
  32. X. Liao, C. Chen, C. H. Chang, Z. Wang, X. Zhang, and S. Xie, "Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water," Biotechnol. Bioprocess Eng., Vol.17, pp.881-886, 2012. https://doi.org/10.1007/s12257-012-0127-x
  33. A. Magic-Knezev, B. Wullings, and D. Van der Kooji, "Polaromonas and Hydrogenophaga species are the predominant bacteria cultured from granular activated carbon filters in water treatment," J. Appl. Microbiol., Vol.107, pp.1457-1467, 2009. https://doi.org/10.1111/j.1365-2672.2009.04337.x
  34. R. M. Niemi, I. Heislanen, R. Heine, and J. Rapala, "Previously uncultured ${\beta}$-proteobacteria dominate in biologically active granular activated carbon (BAC) filters," Water Res., Vol.43, pp.5075-5086, 2009. https://doi.org/10.1016/j.watres.2009.08.037