DOI QR코드

DOI QR Code

Improved Photoelectric Conversion Efficiency of Perovskite Solar Cells with TiO2:TiCl4 Electron Transfer Layer

TiO2:TiCl4 전자수송층을 도입한 페로브스카이트 태양전지의 광전변환효율 향상

  • Ahn, Joon-sub (School of Chemical Engineering, Chonnam National University) ;
  • Kang, Seung-gu (School of Chemical Engineering, Chonnam National University) ;
  • Song, Jae-gwan (School of Chemical Engineering, Chonnam National University) ;
  • Kim, Jin-bong (School of Chemical Engineering, Chonnam National University) ;
  • Han, Eun-mi (School of Chemical Engineering, Chonnam National University)
  • 안준섭 (전남대학교 공과대학 화학공학부) ;
  • 강승구 (전남대학교 공과대학 화학공학부) ;
  • 송재관 (전남대학교 공과대학 화학공학부) ;
  • 김진봉 (전남대학교 공과대학 화학공학부) ;
  • 한은미 (전남대학교 공과대학 화학공학부)
  • Received : 2017.12.07
  • Accepted : 2017.12.26
  • Published : 2017.12.31

Abstract

The $TiCl_4$ as a blocking material is adsorbed in the mesoporous $TiO_2$ electron transfer layer(ETL) of the Perovskite solar cell to prevent the direct contact between the FTO electrode and the photoactive layer(AL), and facilitate the movement of the electrons between $TiO_2:TiCl_4$ ETL and Perovskite AL to improve the photoelectric conversion efficiency(PCE). The structure of the perovskite solar cell is FTO/$TiO_2:TiCl_4$/Perovskite($CH_3NH_3PbI_3$)/spiro-OMeTAD/Ag. It was investigated that the dipping time of the $TiO_2$ into $TiCl_4$ aqueous solution affects on the photoelectric characteristics of the device. By the dipping for 30 minutes, the PCE of the perovskite solar cell with the $TiO_2:TiCl_4$ ETL was the highest 10.46%, which is 27% higher than the cell with $TiO_2$ ETL. From SEM, EDS, and XRD characterization on the $TiO_2:TiCl_4$ ETL and the perovskite AL, it was measured that the decrease of the porosity of the $TiO_2$ layer, the detection of the Cl component by the $TiCl_4$ adsorption, the cube-type morphology of perovskite AL, and shift of the $PbI_2$ peak of the perovskite AL. From these results, it was confirmed that the $TiO_2:TiCl_4$ ETL and the perovskite AL were formed.

페로브스카이트 태양전지의 전자수송층(ETL)인 다공성 $TiO_2$$TiCl_4$를 흡착시켜 FTO 전극과 광활성층의 직접 접촉을 방지하고, 페로브스카이트 광활성층과 $TiO_2:TiCl_4$ 전자수송층 간의 전자 이동을 쉽게 함으로써 소자의 광전변환 효율을 높이고자 했다. 제작한 페로브스카이트 태양전지의 구조는 FTO/$TiO_2:TiCl_4$/Perovskite($CH_3NH_3PbI_3$)/spiro-OMeTAD/Ag이다. $TiCl_4$ 수용액에 다공성 $TiO_2$를 침지하는 시간을 변화시켜 제작한 소자의 광전기적 특성에 미치는 영향을 비교 평가하였다. $TiO_2:TiCl_4$ 전자수송층을 갖는 페로브스카이트 태양전지의 광전변환효율은 $TiCl_4$ 수용액에 $TiO_2$ 전자수송층을 30분 동안 침지하여 제작한 소자에서 가장 높은 10.46%를 얻었으며, 이는 $TiO_2$만의 전자수송층을 갖는 소자에 비해 27% 향상되었다. SEM, EDS, XPS 측정으로 $TiCl_4$ 흡착으로 인한 $TiO_2$ 층의 다공성 감소와 Cl 성분의 검출, 페로브스카이트 광활성층의 큐브형 모폴로지와 $PbI_2$ 피크의 이동을 관찰하였으며, $TiO_2:TiCl_4$ 층과 페로브스카이트 광활성층이 형성되었음을 확인하였다.

Keywords

References

  1. E. C. LEE, "Review on the Progress in Developing Perovskite Solar Cells(in Korea)", Physics & High Technology, 29(9), 23 (2016).
  2. J. M. Shin, and M. K. Song, "Recent Progress and Challenges of Pb-free Perovskite Materials(in Korea)", Polymer Science and Technology, 28(1), 22 (2017).
  3. C. Honsberg, and S. Bowden, "PV CDROM EDUCATIONS", (2016) from http://www.pveducation.org/pvcdrom.
  4. J. C. Song, "2016 NEW & RENEWABLE ENERGY WHITE PAPER(in Korea)", Korea Energy Agency, 1, 329, (2016).
  5. S. H. Lim, "Perovskite solar cell research trend(in Korea)", Bulletin of the Korea Photovoltaic Society, 1(1), 34 (2015).
  6. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell", Nanoscale, 3(10), 4088 (2011). https://doi.org/10.1039/c1nr10867k
  7. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange", Science 348, 1234 (2015). https://doi.org/10.1126/science.aaa9272
  8. M. Peplow, "Henry Snaith: Sun Worshipper", Nature, 504 (7480), 364 (2013).
  9. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale, 3, 4088
  10. B. Maynard, Q. Long, E. A. Schiff, M. Yang, K. Zhu, R. Kottokkaran, H. Abbas, and V. L. Dalal, "Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells", Appl. Phys. Lett., 108(17), 173505 (2016). https://doi.org/10.1063/1.4948344
  11. Z. Liu, S. Seo, and E. C. Lee, "Improvement of power conversion efficiencies in $Cr_2O_3$-nanoparticle-embedded polymer solar cells", Appl. Phys. Lett., 103(13), 133306 (2013). https://doi.org/10.1063/1.4822429
  12. J. Burschka, N. Pellet, S. J. Moon, R. Humphry Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells", Nature, 499(7458), 316 (2013). https://doi.org/10.1038/nature12340
  13. S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Sniath, "Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells", Nano Lett., 14(10), 5561 (2014). https://doi.org/10.1021/nl501982b
  14. T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, "Overcoming ultraviolet light instability of sensitized $TiO_2$ with meso-superstructured organometal trihalide perovskite solar cells", Nat. Commun., 4, 2885 (2013). https://doi.org/10.1038/ncomms3885
  15. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, and W. Zhang, "Anomalous hysteresis in perovskite solar cells", J. Phys. Chem. Lett., 5(9), 1511 (2014). https://doi.org/10.1021/jz500113x
  16. D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. Liu, and R. P. H. Chang, "Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells", Energy Environ. Sci., 9(10), 3071 (2016). https://doi.org/10.1039/C6EE02139E
  17. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herza, and H. J. Snaith, "Lead-free organic-inorganic tin halide perovskites for photovoltaic applications", Energy Environ. Sci., 7(9), 3061 (2014). https://doi.org/10.1039/C4EE01076K
  18. C. D. B, M. G. Christoforo, J. P. M, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee, M. Gratzel, R. Noufi, T. Buonassisi, A. Salleoa, and M. D. McGehee, "Semi-transparent perovskite solar cells for tandems with silicon and CIGS", Energy Environ. Sci., 8(3), 956 (2015). https://doi.org/10.1039/C4EE03322A
  19. S. K. Jang, S. C. Gong, and H. J. Chang, "The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT: PCBM Active Layer", J. Microelectron. Packag. Soc., 17(2,) 63 (2010).
  20. J. H. Lee, T. K. Lee, and C. J. Kim, "Fabrication of $TiO_2$ Electrode Containing Scattering Particles in Dye-Sensitized Solar Cells", J. Microelectron. Packag. Soc., 18(2), 57 (2011).
  21. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasake, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells", J. Am. Chem. Soc., 131(17), 6050 (2009). https://doi.org/10.1021/ja809598r
  22. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites", Science, 338(6107), 643 (2012). https://doi.org/10.1126/science.1228604
  23. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A.Marchioro, S. J. Moon, R. Humphry Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%", Sci. Rep., 2, 591 (2012). https://doi.org/10.1038/srep00591
  24. S. Ito, S. Tanaka, K. Manabe, and H. Nishino, "Effects of surface blocking layer of $Sb_2S_3$ on nanocrystalline $TiO_2$ for $CH_3NH_3PbI_3$ perovskite solar cells", J. Phys. Chem. C., 118(30), 16995 (2014). https://doi.org/10.1021/jp500449z
  25. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, "Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks", Nature, 396(6707), 152 (1998). https://doi.org/10.1038/24132
  26. M. B. Smith, K. Page, T. Siegrist, P. L. Redmond, E. C. Walter, R. Seshadri, L. E. Brus, and M. L. Steigerwald, "Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale $BaTiO_3$", J. Am. Chem. Soc., 130(22), 6955 (2008). https://doi.org/10.1021/ja0758436