DOI QR코드

DOI QR Code

Tree-inspired Chair Modeling

나무 성장 시뮬레이션을 이용한 의자 모델링 기법

  • Received : 2017.08.31
  • Accepted : 2017.12.07
  • Published : 2017.12.08

Abstract

We propose a method for tree-inspired chair modeling that can generate a tree-branch pattern in the skeleton of an arbitrary chair shape. Unlike existing methods that merge multiple-input models, the proposed method requires only one mesh as input, namely the contour mesh of the user's desired part, to model the chair with a branch pattern generated by tree-growth simulation. We propose a new method for the efficient extraction of the contour-mesh region in the tree-branch pattern. First, we extract the contour mesh based on the face area of the input mesh. We then use the front and back mesh information to generate a skeleton mesh that reconstructs the connection information. In addition, to obtain the tree-branch pattern matching the shape of the input model, we propose a three-way tree-growth simulation method that considers the tangent vector of the shape surface. The proposed method reveals a new type of furniture modeling by using an existing furniture model and simple parameter values to model tree branches shaped appropriately for the input model skeleton. Our experiments demonstrate the performance and effectiveness of the proposed method.

본 논문은 나뭇가지 패턴을 의자의 골격에 임의로 합성하는(Tree-Inspired Chair) 모델링 기법을 제안한다. 여러 개의 입력모델을 합성하는 기존 기법과 다르게, 제안 기법은 하나의 메쉬만 사용하여, 사용자가 원하는 부분의 contour mesh로부터 나무 성장 시뮬레이션으로 생성된 패턴을 갖는 의자 모델링이 가능하다. 우리는 나뭇가지 패턴을 생성시킬 영역 contour mesh를 효율적으로 추출하기 위하여 새로운 기법을 제안한다. 우선, 입력된 모델의 face 면적에 기반한 contour mesh를 생성하고, 그 메쉬의 앞뒷면 정보를 이용하여 연결정보가 복원된 skeleton mesh를 생성한다. 또한, 입력 모델의 형상과 유사하게 나뭇가지 패턴을 생성하기 위해 형상 표면의 tangent vector를 고려하는 3-way 나무성장 시뮬레이션 기법을 제안한다. 제안기법은 기존의 가구 모델을 이용하여 간단한 파라미터의 조작만으로 나뭇가지 형상과 가구 모델의 골격을 결합하는 새로운 형태의 가구 모델링을 보여준다. 우리는 실험을 통하여 제안 기법의 성능과 유효성을 보여주었다.

Keywords

References

  1. I. M. Rian and M. Sassone, "Tree-inspired dendriforms and fractal-like branching structures in architecture: A brief historical overview," Frontiers of Architectural Research, vol. 3, no. 3, pp. 298-323, 2014. https://doi.org/10.1016/j.foar.2014.03.006
  2. N. Duncan, L.-F. Yu, S.-K. Yeung, and D. Terzopoulos, "Zoomorphic design," ACM Transactions on Graphics (TOG), vol. 34, no. 4, p. 95, 2015.
  3. W. Chen, X. Zhang, S. Xin, Y. Xia, S. Lefebvre, and W.Wang, "Synthesis of filigrees for digital fabrication," ACM Transactions on Graphics (TOG), vol. 35, no. 4, p. 98, 2016.
  4. T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S. Rusinkiewicz, and D. Dobkin, "Modeling by example," in ACM Transactions on Graphics (TOG), vol. 23, no. 3. ACM, 2004, pp. 652-663.
  5. P. Prusinkiewicz, M. James, and R. Mech, "Synthetic topiary," in Proceedings of the 21st annual conference on Computer graphics and interactive techniques. ACM, 1994, pp. 351-358.
  6. R. Wang, Y. Yang, H. Zhang, and H. Bao, "Variational tree synthesis," in Computer Graphics Forum, vol.33, no.8. Wiley Online Library, 2014, pp. 82-94.
  7. N. Umetani, T. Igarashi, and N. J. Mitra, "Guide dexploration of physically valid shapes for furniture design." ACM Trans. Graph., vol. 31, no. 4, pp. 86-1, 2012.
  8. H. Li, R. Hu, I. Alhashim, and H. Zhang, "Foldabilizing furniture." ACM Trans. Graph., vol. 34, no. 4, p. 90, 2015.
  9. I. Alhashim, H. Li, K. Xu, J. Cao, R. Ma, and H. Zhang, "Topology-varying 3d shape creation via structural blending," ACM Transactions on Graphics (TOG), vol. 33, no. 4, p. 158, 2014.
  10. X. Xie, K. Xu, N. J. Mitra, D. Cohen-Or, W. Gong, Q. Su, and B.Chen,"Sketch-to-design:Context-based part assembly," in Computer Graphics Forum, vol. 32, no. 8. Wiley Online Library, 2013, pp. 233-245.
  11. S. Zhou, C. Jiang, and S. Lefebvre, "Topology-constrained synthesis of vector patterns." ACM Trans. Graph., vol. 33, no. 6, pp. 215-1, 2014.
  12. A. Lindenmayer, "Mathematical models for cellular interactions in development i. filaments with one-sided inputs," Journal of theoretical biology, vol. 18, no. 3, pp. 280-299, 1968. https://doi.org/10.1016/0022-5193(68)90079-9
  13. Y. Rodkaew, S. Siripant, C. Lursinsap, and P. Chongstitvatana, "An algorithm for generating vein images for realistic modeling of a leaf," in Prodeedings of the international conference on computational mathematics and modeling, vol. 9, 2002, pp. 1-9.
  14. B. Benes, O. St'ava, R. Mech, and G. Miller, "Guided procedural modeling," in Computer graphics forum, vol. 30, no. 2. Wiley Online Library, 2011, pp. 325-334.
  15. Y. Rodkaew, P. Chongstitvatana, S. Siripant, and C. Lursinsap, "Particle systems for plant modeling," Plant growth modeling and applications, pp. 210-217, 2003.
  16. S. Shlafman, A. Tal, and S. Katz, "Metamorphosis of polyhedral surfaces using decomposition," in Computer graphics forum, vol. 21, no. 3. Wiley Online Library, 2002, pp. 219-228.
  17. S. Katz and A. Tal, Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM, 2003, vol. 22, no. 3.
  18. P. Benard, A. Hertzmann, and M. Kass, "Computing smooth surface contours with accurate topology," ACM Transactions on Graphics (TOG), vol. 33, no. 2, p. 19, 2014.
  19. W. Zhao, S. Gao, and H. Lin, "A robust hole-filling algorithm for triangular mesh," The Visual Computer, vol. 23, no. 12, pp. 987-997, 2007. https://doi.org/10.1007/s00371-007-0167-y
  20. G. Turk, "Re-tiling polygonal surfaces," ACM SIGGRAPH Computer Graphics, vol. 26, no. 2, pp. 55-64, 1992. https://doi.org/10.1145/142920.134008
  21. G. Barequet and M. Sharir, "Filling gaps in the boundary of a polyhedron," Computer Aided Geometric Design, vol. 12, no. 2, pp. 207-229, 1995. https://doi.org/10.1016/0167-8396(94)00011-G
  22. A. Owens, M. Cieslak, J. Hart, R. Classen-Bockhoff, and P. Prusinkiewicz, "Modeling dense inflorescences," ACM Transactions on Graphics(TOG), vol.35, no.4, p.136, 2016.
  23. J.-M. Kim and H.-J. Cho, "Interactive tree modeling method suitable for real-time systems," Journal of KIISE: Computer Systems and Theory, vol. 38, no. 5, pp. 242-248, 2011.