DOI QR코드

DOI QR Code

Automatic Segmentation of the Mandible using Shape-Constrained Information in Cranio-Maxillo-Facial CBCT Images

두개악안면 CBCT 영상에서 형상제약 정보를 사용한 하악골 자동 분할

  • Kim, Joojin (Department of Software Convergence, Seoul Women's University) ;
  • Lee, Min Jin (Department of Software Convergence, Seoul Women's University) ;
  • Hong, Helen (Department of Software Convergence, Seoul Women's University)
  • 김주진 (서울여자대학교 소프트웨어융합학과) ;
  • 이민진 (서울여자대학교 소프트웨어융합학과) ;
  • 홍헬렌 (서울여자대학교 소프트웨어융합학과)
  • Received : 2017.08.12
  • Accepted : 2017.12.07
  • Published : 2017.12.08

Abstract

In this paper, we propose an automatic segmentation method of the mandible using shape-constrained information in cranio-maxillo-facial CBCT images. The proposed method consists of the following two steps. First, the mandible segmentation based on the global shape information is performed through the statistical shape model generated using the MDCT images. Second, improvement of mandible segmentation is performed considering the local shape information and intensity characteristics of the mandible. To evaluate the performance of the proposed method, the proposed method was evaluated qualitatively and quantitatively based on the results of manual segmentation by expert. Experimental results show that the Dice Similarity Coefficient of the proposed method was 95.64% and 90.97%, respectively, in the mandible body region including the narrow region of large curvature and the condyle region with large positional variance.

본 논문에서는 두개악안면 CBCT 영상에서 형상제약 정보를 사용한 하악골 자동 분할 방법을 제안한다. 제안방법은 다음의 두 단계로 구생된다. 첫째, MDCT 영상을 사용하여 생성된 통계형상모델을 통해 전역적 형상정보 기반의 하악골 분할을 수행한다. 둘째, 하악골의 지역적 형태 정보 및 밝기값 특징을 고려하여 하악골 분할 개선을 수행한다. 제안 방법의 성능을 평가하기 위해 전문가에 의한 수동 분할 결과를 기준으로 제안방법을 정성적, 정량적으로 평가하였다. 실험결과 큰 곡률로 이루어진 좁은 영역을 포함한 하악골 체부 영역과 위치 변이가 큰 관절구 영역에서 제안방법의 다이스계수(DSC: Dice Similarity Coefficient)는 각각 95.64%, 90.97%를 보였다.

Keywords

References

  1. A. Schramm, M. Rucker, N. Sakkas and R. Schon et al, "The use of cone beam CT in cranio-maxillofacial surgery," International Congress Series. Elsevier, Vol. 1281, 2005.
  2. W. C. scarfe, A. G. Farman and P. Sukovic, "Clinical applications of cone-beam computed tomography in dental practice," Journal-Canadian Dental Association vol.72, no.1, pp. 75-80, 2006
  3. C. Spampinato, C. Pino, D. Giordano and R. Leonardi, "Automatic 3D segmentation of mandible for assessment of facial asymmetry," In Medical Measurements and Applications Proceedings (MeMeA), 2012 IEEE International Symposium on. IEEE, pp. 1-4, 2012.
  4. T. M. Nassef, "New segmentation approach to extract human mandible bons based on actual computed tomography data," American Journal of Biomedical Engineering, vol.2, no.5, pp. 197-201, 2012. https://doi.org/10.5923/j.ajbe.20120205.01
  5. H. Lamecker, S. Zachow, A. Wittmers, B. Weber, H. C. Hege, B. Elsholtz and M. Stiller, "Automatic segmentation of mandibles in low-dose CT-data," International Journal of Computer Assisted Radiology and Surgery, vol.1, no.393, 2006.
  6. F. Abdolali, R. A. Zoroofi, M. Abdolali, F. Yokota, Y. Otake and Y. Sato, "Automatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marching," International Journal of Computer Assisted Radiology and Surgery, vol.12, no.4, pp.581-593, 2017. https://doi.org/10.1007/s11548-016-1484-2
  7. L. Wang, K. C. Chen, F. Shi, S. Liao, G. Li, Y. Gao et al, "Automated segmentation of CBCT image using spiral CT atlases and convex optimization," International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg, pp. 251-258, 2013.
  8. L. Wang, K. C. Chen, Y. Gao, F. Shi, S. Liao, G. Li et al, "Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization," Medical physics, vol.41, no.4,, 2014.
  9. N. Aghdasi, Y. Li, A. Beerens, K. Moe and B. Hannaford, "Automatic Mandibke Segmentation on CT Images Using Prior Anatomical Knowledge," The MIDAS Journal - MICCAI Workshop Head and Neck Auto Segmentation Challenge, 2016.
  10. L. Wang, Y. Gao, F. Shi, K. C. Chen, Z. Tang, J. J. Xia and D. Shen, "Automated segmentation of dental CBCT image with prior-guided sequential random forests," Medical physics, vol.43, no.1, pp. 336-346, 2016.
  11. H. Hong, J. H. Lee, H. H. Jo and J. H. Yoo, "Automatic Generation of the Mandible Bones using Statistical Shape Model in CT Dataset," Proceeing of CARS, vol.2, pp. 522-526, 2007.
  12. J. H. Yoo, H. Hong, "Building a Robust 3D Statistical Shape Model of the Mandible," Journal of KIISE : Software and Applications, vol.35, no.2, pp.118-127, 2008.
  13. R. C. Gonzalez and R. E. Woods, "Digital Image Prosessing," No. 001.64044 G6, 1977.