DOI QR코드

DOI QR Code

Current Status of Ilmenite Beneficiation Technology for Production of TiO2

TiO2 제조를 위한 일메나이트 처리기술 현황

  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University) ;
  • Jung, Jae-Young (Research Institute of Industrial Science & Technology (RIST))
  • Received : 2016.08.09
  • Accepted : 2016.10.05
  • Published : 2016.10.31

Abstract

Titanium and iron are closely related in nature, although titanium is the ninth most abundant element in the Earth's crust. Iron in titanium ores must be removed for use as feedstocks in the manufacture of titanium dioxide pigments and pure $TiCl_4$ for metal titanium. In this study, various beneficiation processes of ilmenite for production of $TiO_2$ have been reviewed and compared. Most of these processes involve a combination of pyrometallurgy and hydrometallurgy. These beneficiation processes of ilmenite generate considerable quantities of wastes primarily in the form of iron salt, iron oxide and acidic effluents. Therefore, it is important that recovery of acid value from waste and conversion of iron bearing waste to useful materials for development of new beneficiation processes of ilmenite.

타이타늄은 지각 구성원소 중 아홉 번째로 풍부한 원소이며, 철과 밀접한 관계를 가지고 있다. 타이타늄 광석으로부터 안료급의 $TiO_2$나 금속 타이타늄 제조를 위한 순수한 $TiCl_4$를 제조하기 위해서는 일메나이트 중에 함유되어 있는 철 성분을 제거하여야 한다. 본 연구에서는 합성 루타일과 $TiO_2$를 제조하는 여러 가지 프로세스를 비교하여 고찰하였다. 대부분의 프로세스는 건식야금과 습식야금을 조합한 것이며, 이러한 프로세스에서는 상당한 량의 철염, 철 산화물 및 폐산이 발생하고 있다. 따라서 일메나이트를 처리하기 위한 새로운 프로세스를 개발하기 위해서는 폐산의 재이용과 철 부산물의 유가 자원화가 중요하다.

Keywords

References

  1. George, D and Gibson, C., 2015: Mineral Commodities: Growing mineral sands producer(13 Aug. 2015), EDISON Investment Research Lim., Welshpool, Australia, www.edisoninvestmentresearch.com.
  2. Housley, K. L., 2007: Ch. 1 A New Element, Black Sand The History of Titanium, 1st Ed., p. 1, Metal Management Aerospace, Inc., Hartford, USA.
  3. Sohn, H. S. and Jung, J. Y., 2016: Current Status of Titanium Smelting Technology, J. of Korean Inst. of Resources Recycling 25(4), pp. 68-79. https://doi.org/10.7844/KIRR.2016.25.4.68
  4. Benjah-bmm27: https://en.wikipedia.org/wiki/Rutile and https://en.wikipedia.org/wiki/anatase.
  5. Gazquez, M. et al., 2014: A Review of the Production Cycle of Titanium Dioxide Pigment, Materials Sciences and Applications 5, pp. 441-458. https://doi.org/10.4236/msa.2014.57048
  6. Padmanabhan, N.P.H., Sreenivas, T. and Rao, N.K., 1990: Processing of Ores of Titanium, Zirconium, Hafnium, Niobium, Tantalum, Molybdenum, Rhenium, and Tungsten: International Trends and the Indian Scene, High Temperature Materials and Processes 9(2-4), pp. 217-247. https://doi.org/10.1515/HTMP.1990.9.2-4.217
  7. Schlechten, Albert W. et al., 1972: Appendix D BENILITE CORPORATION OF AMERICA, Processes for rutile substitutes, pp. 81-87, NMAB-293, Washington, D.C., US.
  8. Chen, J. H. and Christi, C., 1974: BENEFICIATION OF TITANIFEROUS ORES, United States Patent 3,825,419.
  9. Schlechten, Albert W. et al., 1972: Appendix D Letter Requesting Process Information, Companies Querite, and Replies, Processes for rutile substitutes, pp. 130-132, NMAB-293, Washington, D.C., US.
  10. Walter Hoecker, 1994: PROCESS FOR THE PRODUCTION OF SYNTHETIC RUTILE, United States Patent 5,601,630.
  11. Robert G. Auger and Edward F. Restelli, Jr., 1976: PROCESS FOR PRODUCING A SYNTHETIC RUTILE FROM ILMENTITE, United States Patent 4,097,574.
  12. Sinha, H.N., 1973: MURSO process for producing rutile substitute, R.I. Jaffe, H.M. Burte (Eds.), Titanium science and technology, pp. 233-244, Cambridge, MA; A Publication of the Metallurgical Society of AIME 1973, Plenum Press, New York, London.
  13. Schlechten, Albert W. et al., 1972: Appendix D Letter Requesting Process Information, Companies Querite, and Replies, Processes for rutile substitutes, pp. 145-149, NMAB-293, Washington, D.C., US.
  14. Son, Y., Ring, R. and Sohn, H. S., 2016: Removal of Iron from Ilmenite through Selective Chlorination Using PVC, J. of Korean Inst. of Resources Recycling 25(3), pp. 74-81. https://doi.org/10.7844/kirr.2016.25.3.74
  15. Kang, J. and Okabe, T. H., 2013: Upgrading Titanium Ore Through Selective Chlorination Using Calcium Chloride, Metall. Trans. B 44B, pp. 516-527.
  16. Rhee, K.I. and Sohn, H.Y., 1990: The Selective Carbochlorination of Iron from Titaniferous Magnetite Ore in a Fluidized Bed, Metall. Trans. B 21B, pp. 341-347.
  17. Murty, C.V.G.K., Upadhyay, R. and Asokan, S., 2007: Electro Smelting of Ilmenite for Production of TiO2 Slag - Potential of India as a Global Player, XI International Conference on Innovations in the Ferro Alloy Industry (INFACON XI), Das and Sunderesan, pp.823-836, Indian Ferro Alloy Producers' Association, , Macmillan India, Delhi, 18-21 Feb. 2007.
  18. Walpole, E.A., Winter, J.D., 2002: The Austpac ERMS and EARS processes for the manufacture of high-grade synthetic rutile by the hydrochloride leaching of ilmenite, Proceedings of Chloride Metallurgy 2002, 2. Manfredm E. and Peek, L., pp. 401-415, Metallurgical Society of CIM, Montreal, Canada, 19-23 Oct. 2002.
  19. Filippou, D. and Hudon, G., 2009: Iron Removal and Recovery in the Titanium Dioxide Feedstock and Pigment Industries, JOM 61(10), pp.36-42. https://doi.org/10.1007/s11837-009-0150-3
  20. Verhulst, D., Sabachy, B., Spitler, T., Prochazka, J., 2003: New developments in the Altair hydrochloride $TiO_2$ pigment process, Hydrometallurgy 2003, Proceedings of the 5th International Symposium Honoring Professor Ian M. Ritchie, 1 Leaching and Solution Purification, Young, C. et al., pp. 565-575, Vancouver, Canada, 24-27 Aug. 2003.
  21. Otto, E, 2013: Applying Solvent Extraction Processing to the Titanium Sector, Cormark Argex Report (9-Jan-13), CORMARK SECURITIES INC., http://argex.ca/documents/Cormark.

Cited by

  1. 일메나이트 광의 Fe 선택염화 거동에 미치는 환원제의 영향에 관한 연구 vol.27, pp.3, 2016, https://doi.org/10.7844/kirr.2018.27.3.30
  2. Removal of Iron from Ilmenite Through Selective Chlorination Using Coke and Cl2 Gas vol.57, pp.3, 2016, https://doi.org/10.3365/kjmm.2019.57.3.146
  3. Kroll법에 의한 타이타늄의 제조기술 vol.29, pp.4, 2016, https://doi.org/10.7844/kirr.2020.29.4.3
  4. Improving the production efficiency of high-titania slag in Ti extraction process: fluxing effect on formation of pseudobrookite vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-63532-4
  5. 타이타늄의 리사이클링 기술 현황 vol.30, pp.1, 2016, https://doi.org/10.7844/kirr.2021.30.1.26
  6. 타이타늄 밀링/터닝 스크랩의 절삭공구 소재화 vol.30, pp.2, 2016, https://doi.org/10.7844/kirr.2021.30.2.61