DOI QR코드

DOI QR Code

Comparison of H2, LNG, and LPG explosion characteristics in a limited space using CFD Simulation

CFD 시뮬레이션을 이용한 제한된 공간에서의 수소, LNG, LPG 폭발특성 비교

  • Baek, Ju-Hong (Dept. of Chemical Engineering, Kwangwoon University) ;
  • Lee, Hyang-Jig (Dept. of Chemical Engineering, Kwangwoon University) ;
  • Jang, Chang Bong (Occupational Safety and Health Research Institute, Korea occupational safety and health agency)
  • 백주홍 (광운대학교 화학공학과) ;
  • 이향직 (광운대학교 화학공학과) ;
  • 장창봉 (안전보건공단 산업안전보건연구원 안전연구실)
  • Received : 2016.02.23
  • Accepted : 2016.05.18
  • Published : 2016.06.30

Abstract

The demand for hydrogen is steadily increasing every year, and the facilities to produce and transfer hydrogen are being increased as well. Therefore, the possibility of a critical accident at hydrogen is expected to increase. Furthermore, the materials most likely to cause accidents at industrial sites are LPG 61%, hydrogen 12%, and LNG 10%, and the frequency of accidents due to these three combustible gases is relatively high. Thus, a CFD simulation was used to compute the explosion risk of danger-frequent combustible gases-hydrogen, LNG, and LPG-within a limited space, and the outcomes were compared and analyzed to review the risk of explosion of each gase within a limited space.

화석연료의 의존도를 줄이고자 대체에너지 연구가 활발하게 이루어지고 있는 현재, 산업에서 가장 많이 사용하고 있는 대체에너지 중 하나가 수소이다. 수소의 수요는 매년 꾸준히 증가하고 있으며, 수소의 생산 및 이송을 위한 설비도 늘어나고 있는 실정이다. 이에 따른 수소설비에서 중대사고가 발생할 확률 또한 증가할 것으로 예상된다. 또한 산업현장에서 가장 사고를 많이 초래하는 물질은 LPG 61%, 수소 12%, LNG 10%로 세 가지 가연성가스의 사고 빈도는 높은 축에 속한다. 따라서 산업용으로 많이 사용되며 사고다발성 가연성 가스인 수소, LNG, LPG가 제한된 공간에서 폭발했을 때의 폭발위험성에 대하여 CFD 시뮬레이션을 이용하여 계산을 하였고, 그 결과들을 기반으로 비교분석하여, 제한된 공간에서의 각 가스별 폭발에 대한 위험성을 검토하였다.

Keywords

References

  1. Korea Gas Safety Corporation, 2013 Gas Statistics, KGS, (2014)
  2. Korea energy management corporation, New & renewable energy white paper, KEMCO, (2014)
  3. Bongjin Gim, Jong-wook Kim, Sang jin choi., "The status of domestic hydrogen production consumption and distribution", the korean Hydrogen and New Evergy Society, 16(4), 391-399, (2005)
  4. Korea Occupational Safety and Health Agency., A study on prevention of chemical accident using simulation techniques, KOSHA, Ulsan, (2014)
  5. John H.S. Lee. Explosion Hazards of Hydrogen- Air Mixtures, McGill University, Montreal, Canada.
  6. Mercedes Gomez-Mares, Luis Zarate, Joaquim Casal., "Jet fire and the domino effect", J. Fire Safety, 43, 583-588, (2008) https://doi.org/10.1016/j.firesaf.2008.01.002
  7. B.Angers, A.Hourri, Benard, E.Demael, S.Ruban, S.Jallais., "Modeling of hydrogen explosion on a pressure swing adsorption facility", J. Hydrogen Energy., 39, 6210-6221, (2014) https://doi.org/10.1016/j.ijhydene.2013.10.119
  8. Prankul Middha, Olav R. Hansen., "CFD simulation study to investigate the risk from hydrogen vehicles in tunnels", J. Hydrogen Energy, 34, 5875-5886, (2009) https://doi.org/10.1016/j.ijhydene.2009.02.004
  9. FMEA, Hazardous Materials Guide for First Responders, 21st Century Hazmat Guides, (2007)
  10. Daniel A. Crowl, Joseph F. Louvar, Chemical Process Safety Fundamentals with Applications, 3rd ed., Prentice Hall, New Jersey, (2011)
  11. Gexcon, Flacs Manual, Gexcon, (2013)
  12. Middha Prankul, Hansen Olav R, Storvik Idar E., "Validation of CFD-model for hydrogen dispersion", J. Loss Prevent. Ind., 22, 1034-1038, (2009) https://doi.org/10.1016/j.jlp.2009.07.020
  13. Middha Prankul, Hansen Olav R, Grune Joachim, Kotchourko Alexei, "CFD calculations of gas leak dispersion and subsequent gas explosions: Validation against ignited impinging hydrogen jet experiments", J. Hazard Mater., 179, 84-94, (2010) https://doi.org/10.1016/j.jhazmat.2010.02.061
  14. Makarov D, Verbecke F, Molkov V, Roe O, Skotenne M, Kotchourko A, et al., "An inter-comparison exercise on CFD model capabilities to predict a hydrogen explosion in a simulated vehicle refuelling environment", J. Hydrogen Energy, 34(6), 2800-14, (2009) https://doi.org/10.1016/j.ijhydene.2008.12.067
  15. Gant S, Hoyes J., Review of FLACS version 9.0 dispersion modelling capabilities, Health and Safety Executive HSE Books, HSE, (2010)
  16. Fotis Rigas, Spyros Sklavounos., "Experimentally validated 3-D simulation of shock waves generated by dense explosives in confined complex geometries", Journal of Hazardous Materials. A(121), 23-30, (2005) https://doi.org/10.1016/j.jhazmat.2005.01.031
  17. Lewis, B. and von Elbe, G., Combustion, Flame and Explosion of Gases, 3rd ed., Academic Press, London, (1987)

Cited by

  1. CFD 툴을 활용한 패키지형 수소충전시스템의 안전성 향상 연구 vol.30, pp.3, 2016, https://doi.org/10.7316/khnes.2019.30.3.243
  2. Experimental Evaluation of Internal Blast Resistance of Reinforced Concrete Structures using Blast Resistance Panels vol.20, pp.6, 2020, https://doi.org/10.9798/kosham.2020.20.6.15
  3. Study on Reduction Effect of Vibration Propagation due to Internal Explosion Using Composite Materials vol.15, pp.1, 2021, https://doi.org/10.1186/s40069-021-00467-8