DOI QR코드

DOI QR Code

Stress and strain analysis of functionally graded plates with circular cutout

  • Dhiraj, Vikash Singh (Department of Mechanical Engineering, MPSTME, SVKM's NMIMS Shirpur Campus) ;
  • Jadvani, Nandit (Department of Mechanical Engineering, MPSTME, SVKM's NMIMS Shirpur Campus) ;
  • Kalita, Kanak (Department of Mechanical Engineering, MPSTME, SVKM's NMIMS Shirpur Campus)
  • Received : 2016.07.14
  • Accepted : 2016.08.31
  • Published : 2016.06.25

Abstract

Stress concentration is an interesting and essential field of study, as it is the prime cause of failure of structural parts under static load. In the current paper, stress and strain concentration factors in unidirectional functionally graded (UDFGM) plate with central circular cutout are predicted by carrying out a finite element study on ANSYS APDL platform. The present study aims to bridge the lacuna in the understandings of stress analysis in perforated functionally graded plates. It is found that the material variation parameter is an important criterion while designing a perforated UDFGM plate. By selecting a proper material variation parameter and direction of material gradation, the stress and strain concentrations can be significantly reduced.

Keywords

References

  1. Carroll, J., Adams, D.P., Maguire, M.C., Bishop, J.E., Reedlunn, B., Song, B., . . . others. (2015), "Variability in mechanical properties of laser engineered net shaping material. Tech. rep., Sandia national laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA.
  2. Dag, S., Ilhan, K. and Erdogan, F. (2008), "Mixed-mode stress intensity factors for an embedded crack in an orthotropic FGM coating", Multiscale and functionally graded materials 2006:(M\&FGM 2006), 973, 16-21.
  3. Darwish, F., Gharaibeh, M. and Tashtoush, G. (2012), "A modified equation for the stress concentration factor in countersunk holes", Eur. J. Mech.-A/Solids, 36, 94-103. https://doi.org/10.1016/j.euromechsol.2012.02.014
  4. Ding, S.H. and Li, X. (2008), "Anti-plane problem of periodic interface cracks in a functionally graded coating-substrate structure", Int. J. Fract., 153(1), 53-62. https://doi.org/10.1007/s10704-008-9302-7
  5. Durejko, T., Zi{\k{e}}tala, M., Polkowski, W. and Czujko, T. (2014), "Thin wall tubes with Fe 3 Al/SS316L graded structure obtained by using laser engineered net shaping technology", Mater. Des., 63, 766-774. https://doi.org/10.1016/j.matdes.2014.07.011
  6. Enab, T.A. (2012), "A comparative study of the performance of metallic and FGM tibia tray components in total knee replacement joints", Comput. Mater. Sci., 53(1), 94-100. https://doi.org/10.1016/j.commatsci.2011.09.032
  7. Enab, T.A. (2014), "Stress concentration analysis in functionally graded plates with elliptic holes under biaxial loadings", Ain Shams Eng. J., 5(3), 839-850. https://doi.org/10.1016/j.asej.2014.03.002
  8. Kalita, K. and Halder, S. (2014), "Static analysis of transversely loaded isotropic and orthotropic plates with central cutout", J. Inst. Eng. (India): Series C, 95(4), 347-358. https://doi.org/10.1007/s40032-014-0138-9
  9. Kalita, K., Shinde, D. and Thomas, T.T. (2015), "Non-dimensional stress analysis of an orthotropic plate", Mater. Today: Proc., 2(4), 3527-3533. https://doi.org/10.1016/j.matpr.2015.07.329
  10. Kim, J.H. and Amit, K. (2008), "A generalized interaction integral method for the evaluation of the T-stress in orthotropic functionally graded materials under thermal loading", J. Appl. Mech., 75(5), 051112. https://doi.org/10.1115/1.2936234
  11. Kumar, A., Agrawal, A., Ghadai, R. and Kalita, K. (2016), "Analysis of stress concentration in orthotropic laminates", Procedia Tech., 23, 156-162. https://doi.org/10.1016/j.protcy.2016.03.012
  12. Li, Y.D. and Lee, K.Y. (2008), "Fracture analysis of a weak-discontinuous interface in a symmetrical functionally gradient composite strip loaded by anti-plane impact", Arch. Appl. Mech., 78(11), 855-866. https://doi.org/10.1007/s00419-007-0194-1
  13. Nemat-Alla, M. (2003), "Reduction of thermal stresses by developing two-dimensional functionally graded materials", Int. J. Solid. Struct., 40(26), 7339-7356. https://doi.org/10.1016/j.ijsolstr.2003.08.017
  14. Oonishi, H., Noda, T., Ito, S., Kohda, A., Ishimaru, H., Yamamoto, M. and Tsuji, E. (1994), "Effect of hydroxyapatite coating on bone growth into porous titanium alloy implants under loaded conditions", J. Appl. Biomater., 5(1), 23-37. https://doi.org/10.1002/jab.770050105
  15. Saini, P.K. and Kushwaha, M. (2014), "Stress variation around a circular hole in functionally graded plate under bending", Int. J. Mech., Aerospace, Ind. Mechatronics Eng., 8(3), 536-540.
  16. Sburlati, R. (2013), "Stress concentration factor due to a functionally graded ring around a hole in an isotropic plate", Int. J. Solid. Struct., 50(22), 3649-3658. https://doi.org/10.1016/j.ijsolstr.2013.07.007
  17. Sburlati, R., Atashipour, S.R. and Atashipour, S.A. (2014), "Reduction of the stress concentration factor in a homogeneous panel with hole by using a functionally graded layer", Compos. Part B: Eng., 61, 99-109. https://doi.org/10.1016/j.compositesb.2014.01.036
  18. Shao, Z., Ang, K., Reddy, J. and Wang, T. (2008), "Nonaxisymmetric thermomechanical analysis of functionally graded hollow cylinders", J. Therm. Stresses, 31(6), 515-536. https://doi.org/10.1080/01495730801977879
  19. Shen, H.S. and Noda, N. (2007), "Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments", Compos. Struct., 77(4), 546-560. https://doi.org/10.1016/j.compstruct.2005.08.006
  20. Shokrolahi-Zadeh, B. and Shodja, H. (2008), "Spectral equivalent inclusion method: anisotropic cylindrical multi-inhomogeneities", J. Mech. Phys. Solids, 56(12), 3565-3575. https://doi.org/10.1016/j.jmps.2008.04.008
  21. Singh, B., Rokne, J. and Dhaliwal, R. (2008), "Vibrations of a solid sphere or shell of functionally graded materials", Eur. J. Mech.-A/Solids, 27(3), 460-468. https://doi.org/10.1016/j.euromechsol.2007.08.006
  22. Wang, B., Mai, Y.W. and Zhang, X. (2005), "Functionally graded materials under severe thermal environments", J. Am. Ceramic Soc., 88(3), 683-690. https://doi.org/10.1111/j.1551-2916.2005.00126.x
  23. Watari, F. (1997), "Elemental mapping of functionally graded dental implant in biocompatibility test", Functionally Graded Mater., 1996, 749-754.
  24. Yamanouchi, M. and Koizumi, M. (1991), Functionally gradient materials.
  25. Yang, Q., Gao, C.F. and Chen, W. (2010), "Stress analysis of a functional graded material plate with a circular hole", Arch. Appl. Mech., 80(8), 895-907. https://doi.org/10.1007/s00419-009-0349-3
  26. Yang, Z., Kim, C.B., Cho, C. and Beom, H.G. (2008), "The concentration of stress and strain in finite thickness elastic plate containing a circular hole", Int. J. Solid. Struct., 45(3), 713-731. https://doi.org/10.1016/j.ijsolstr.2007.08.030
  27. Young, W.C. and Budynas, R.G. (2002), Roark's formulas for stress and strain (Vol. 7), McGraw-Hill New York.
  28. Zhang, Z., Paulino, G.H. and Celes, W. (2008), "Cohesive modeling of dynamic crack growth in homogeneous and functionally graded materials", Multiscale Funct. Grad. Mater, 973, 562-567.
  29. Zhong, Z. and Cheng, Z. (2008), "Fracture analysis of a functionally graded strip with arbitrary distributed material properties", Int. J. Solid. Struct., 45(13), 3711-3725. https://doi.org/10.1016/j.ijsolstr.2007.09.023

Cited by

  1. Theoretical and numerical analysis of stress and stress intensity factor in bi-material vol.10, pp.1, 2019, https://doi.org/10.1108/IJSI-08-2018-0048
  2. Aluminum and E-glass epoxy plates behavior subjected to shock loading vol.6, pp.2, 2017, https://doi.org/10.12989/amr.2017.6.2.155
  3. Optimum Design of Infinite Perforated Orthotropic and Isotropic Plates vol.8, pp.4, 2016, https://doi.org/10.3390/math8040569