• Title/Summary/Keyword: FEM simulation

Search Result 1,289, Processing Time 0.025 seconds

A Study on FEM Application in PIC Plasma Simulation (PIC 플라즈마 시뮬레이션에서의 유한요소법 적용에 관한 연구)

  • Min, Woong-Kee;Kim, Hyeong-Seok;Lee, Seok-Hyun;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.163-165
    • /
    • 1996
  • In the PIC simulation of plasma, the fields are commonly calculated on uniform spatial grids using FDM. But, FDM has a difficulty in modeling a complex shaped model. FEM has a good flexibiblity in treating a complex shape, so that we calculated the field by using FEM not FDM. In this paper, the plasma between plane-to-plane electrodes was simulated using FEM and FDM. Comparing the results of those two methods told us that FEM is also valid as a calculating method in PIC plasma simulation. In order to verify the use of FEM, the discharge of rod-to-plane was simulated. There was not a little distortion of the electric field between the electrodes due to the distribution of space charges.

  • PDF

Simulation of Dynamic Interaction Between Maglev and Guideway using FEM (FEM을 이용한 자기부상열차/궤도 동적 상호작용 시뮬레이션)

  • Han Hyung-Suk;Kim Dong-Sung;Lee Jong-Min;Kang Heung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.363-368
    • /
    • 2004
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated guideways comprised of steel, aluminum and concrete. Therefore, an analysis of the dynamic interaction between the Maglev vehicle and the guideway is needed in the design of the critical speed, ride, controller design and weight reduction of the guideway. This study introduces a dynamic interaction simulation technique that applies FEM. The proposed method uses FEM to model the elevated guideway and the Maglev vehicle, which is different from conventional studies. Because the proposed method uses FEM, it is useful to calculate the deformation of the elevated guideway, the dynamic stress, and the motion of the vehicle. By applying the proposed method to an urban transit Maglev vehicle, UTM01, the dynamic response is simulated according to velocity increase and can be reviewed again. From the result of the study, we concluded that FEM simulation of the dynamic interaction between the maglev vehicle and the guideway is possible.

  • PDF

Modal Analysis and FEA of a Compressor Motor for 120Hz Resonance Reducing (컴프레서용 모터 120Hz 공진 저감을 위한 연구)

  • Shin, Hyun-Jang
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.81-87
    • /
    • 2017
  • 315Fr compressor motor exceeds vibration specifications. To find the reason, first a modal impact test with free-free condition is done. Second a modal test with fixed condition is done. Thereafter the test results are compared with FEM simulation results. Using free-free condition modal impact test, FEM simulation conditions (boundary, mesh..) are modified. The motor has rolling motion around 120Hz. FEM simulation also shows same result. FEM simulation will be used to develop other series compressor motors. Using this, manufacturing test model and doing test will be useless.

FEM analysis of Pearlite Lamella Structure of High Carbon Steel on Drawing Process Conditions (신선가공조건에 따른 고탄소강 선재 Pearlite 층상구조의 유한요소해석)

  • Kim Hyun-soo;Bae Chul-min;Lee Choong-yeol;Kim Byung-min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.325-332
    • /
    • 2005
  • This paper presents a study on defects in pearlite lamella structure of high carbon steel by means of finite-element method(FEM) simulation. High carbon pearlite steel wire is characterized by its nano-sized microstructure feature of alternation ferrite and cementite. FEM simulation was performed based on a suitable FE model describing the boundary conditions and the exact material behavior. Due to the lamella structure in high carbon pearlite steel wire, material plastic behavior was taken into account on deformation of ferrite and cementite. The effects of many important parameters(reduction in area, semi-die angle, lamella spacing, cementite thickness) on wire drawing process can be predicted by DEFORM-2D. It is possible to obtain the important basic data which can be guaranteed in the ductility of high carbon steel wire by using FEM simulation.

The development of On-line Model for the Prediction of Effective Strain Distribution by Non-dimensionalization on FEM Basis (유한요소법 기반의 무차원화를 이용한 판 유효 변형률 분포 예측 온라인 모델 개발)

  • Kim S. H.;Lee J. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.359-367
    • /
    • 2004
  • In this research on-line model for the prediction of the effective strain distribution in strip on finishing mill process is presented. To describe the effective strain distribution in strip, three guide points and a distribution fitting variable are used. On-line models to get these points and fitting variable non-dimensionalization method and least square method were used with FEM simulation results. The model is developed using strip only FEM simulation as reference sets and compared with roll coupled FEM simulation results as perturbed sets. The on-line model to describe effective strain distribution shows good agreement with coupled FEM analysis results.

  • PDF

Simulation of the Forming Process of the Shielded Slot Plate for the Molten Carbonate Fuel Cell Using a Ductile Fracture Criterion (연성파괴조건을 사용한 용융탄산염 연료전지용 쉴디드 슬롯 플레이트의 성형 공정 유한요소 해석)

  • Lee, C.W.;Yang, D.Y.;Lee, S.R.;Kang, D.W.;Chang, I.G.;Lee, T.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.298-304
    • /
    • 2012
  • The shielded slot plates for a molten carbonate fuel cell(MCFC) have a sheared corrugated trapezoidal pattern. In the FEM simulations for the production of the shielded slot plate, the user material subroutine VUMAT in the commercial FEM software ABAQUS was used to implement a ductile fracture criterion. The critical damage value for the ductile fracture criterion was determined by comparing the experimental results of the shearing process with the simulation results. Using the ductile fracture criterion, the FEM simulation of the three-dimensional forming process of the shielded slot plate was conducted. The effects of the shearing process on the forming process were examined through FEM simulation and experiments. The forming simulation of nine unit cells was conducted. Using the simulation results of the forming process, the deformed shape after springback was calculated. The experimental result shows good agreement with the simulation.

Mechanical parameters detection in stepped shafts using the FEM based IET

  • Song, Wenlei;Xiang, Jiawei;Zhong, Yongteng
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.473-481
    • /
    • 2017
  • This study suggests a simple, convenient and non-destructive method for investigation of the Young's modulus detection in stepped shafts which only utilizes the first-order resonant frequency in flexural mode and dimensions of structures. The method is based on the impulse excitation technique (IET) to pick up the fundamental resonant frequencies. The standard Young's modulus detection formulas for rectangular and circular cross-sections are well investigated in literatures. However, the Young's modulus of stepped shafts can not be directly detected using the formula for a beam with rectangular or circular cross-section. A response surface method (RSM) is introduced to design numerical simulation experiments to build up experimental formula to detect Young's modulus of stepped shafts. The numerical simulation performed by finite element method (FEM) to obtain enough simulation data for RSM analysis. After analysis and calculation, the relationship of flexural resonant frequencies, dimensions of stepped shafts and Young's modulus is obtained. Numerical simulations and experimental investigations show that the IET method can be used to investigate Young's modulus in stepped shafts, and the FEM simulation and RSM based IET formula proposed in this paper is applicable to calculate the Young's modulus in stepped shaft. The method can be further developed to detect mechanical parameters of more complicated structures using the combination of FEM simulation and RSM.

Ring-Rolling Design of a Large-Scale Ti-6Al-4V alloy (대형 Ti-6Al-4V 합금의 Ring-Rolling 공정설계)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.373-376
    • /
    • 2006
  • The ring rolling design for a large-scale Ti-6Al-4V alloy ring was performed with a calculation method and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was to determine geometry design such as initial billet and blank size, and final rolled ring shape. A commercial FEM code, SHAPE was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

  • PDF

Process Design for Large-Scale Ring-Rolling of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 대형 링 압연공정설계)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.172-177
    • /
    • 2007
  • The process design for large-scale ring rolling of Ti-6Al-4V alloy was performed by calculation method, processing map approach and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was used to make geometry design such as initial billet and blank sizes, and final rolled ring shape. A commercial FEM code, SHAPE-RR was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling and the formation of over-heating above $\beta$-transus temperature due to deformation heating, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

A study on 2-dimensional simulation of AC PDP using FEM-FCT method (FEM-FCT 기법을 이용한 AC PDP 2차원 시뮬레이션에 관한 연구)

  • Kim, Yong-Jin;Min, Woong-Gee;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.565-567
    • /
    • 2000
  • In this paper, the discharge characteristics of AC PDP, one of the leading technologies currently under development for large-area flat displays, is computed by using Finite Element Method(FEM) combined with Flux-corrected Transport(FCT) algorithm. Up to now, many simulations of AC PDP have been mainly done by Finite Difference Method(FDM). But we simulated the AC PDP by using FEM-FCT method which discretizes the region of interest with unstructured grids. FEM-FCT method can reduce the computational cost because of refining locally where the physical quantities have steep gradients and is more efficient in solving discharge problems, such as a AC PDP. Results are presented in Ne-Xe(4%) gas mixture for a gas pressure of 400 Torr and as the discharge proceeds, the space and time variations of the electron and ion densities, potential and wall charges on the dielectric are described. Results from our simulation by FEM-FCT are similar to those from simulation by FDM and are more efficient in computational cost reduction.

  • PDF