• Title/Summary/Keyword: circular cut-out

Search Result 25, Processing Time 0.023 seconds

Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM

  • Varun, Katiyar;Ankit, Gupta;Abdelouahed, Tounsi
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.621-640
    • /
    • 2022
  • In the present article, the vibration response of a geometrically imperfect bi-directional functionally graded plate (2D-FGP) with geometric discontinuities and micro-structural defects (porosities) has been investigated. A porosity model has been developed to incorporate the effective material properties of the bi-directional FGP which varies in two directions i.e. along the axial and transverse direction. The geometric discontinuity is also introduced in the plate in the form of a circular cut-out at the center of the plate. The structural kinematic formulation is based on the non-polynomial trigonometric higher-order shear deformation theory (HSDT). Finite element formulation is done using C° continuous Lagrangian quadrilateral four-noded element with seven degrees of freedom per node. The equations of motion have been derived using a variational approach. Convergence and validation studies have been documented to confirm the accuracy and efficiency of the present formulation. A detailed investigation study has been done to evaluate the influence of the circular cut-out, geometric imperfection, porosity inclusions, partial supports, volume fraction indexes (along with the thickness and length), and geometrical configurations on the vibration response of 2D-FGP. It is concluded that after a particular cut-out dimension, the vibration response of the 2D FGP exhibits non-monotonic behavior.

Fatigue Crack and Delamination Behavior in the Composite Material Containing n Saw-cut and Circular Hole (I) - Aramid Fiber Reinforced Metal Laminates - (소컷 및 원공 주위의 피로균열 형태변화와 층간분리거동 (I) - 아라미드섬유 강화 금속적층재의 경우 -)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • The aramid fiber reinforced metal laminates(AFRMLs) used for the wing part fair flight suffer the cyclic bending moment of variable amplitude during service. The fatigue crack propagation and delamination behavior in AFRMLs containing a saw-cut and circular hole was investigated using the average stress criterion(ASC) model. Mechanical tests were carried out using the cyclic bending moment of 4.9 N . m and delamination was observed by ultrasonic C-scan images. In case of AFRMLs containing a saw-cut fatigue crack propagated in aluminum matrix, inducing delamination. However, in case of AFRMLs containing a circular hole, delamination formed with two types under cyclic bending moment of 4.9 N . m. First, delamination formed along the fatigue crack in aluminum matrix. Second, delamination formed without any fatigue crack around the circular hole. Therefore, delamination was formed depending on the stress distribution near the circular hole.

Variation of Notch Shape on the Delamination Zone Behavior in Al/AFRP Laminates (노치형태 변화에 따른 Al/AFRP 적층재의 층간분리거동)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.278-285
    • /
    • 2001
  • Aluminum/Aramid Fiber Reinforced Plastic(Al/AFRP) laminates are applied to the fuselage-wing intersection. The main objective of this study was to evaluate the delamination zone behavior of Al/AFRP with a saw-cut and circular hole using average stress criterion and the effect of notch geometry. Mechanical tests were carried out to determine the cyclic-bending moment and delamination zone observed ultrasonic C-scan pictures. In case of Al/AFRP containing saw-cut specimen, the shape and size of the delamination zone formed along the fatigue crack. However, in case of Al/AFRP containing circular hole specimen, the shape and size of delamination zone formed two types. first type, delamination zone formed along the fatigue crack. Second type, not observed fatigue crack. Therefore, delamination zone was formed dependently of the circular hole shape.

  • PDF

Evaluation of the resin cement thicknesses and push-out bond strengths of circular and oval fiber posts in oval-shapes canals

  • Er, Ozgur;Kilic, Kerem;Kilinc, Halil Ibrahim;Aslan, Tugrul;Sagsen, Burak
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate whether the push-out bond strength varies between oval and circular fiber posts, and to examine the effect on the resin cement thicknesses around the posts. MATERIALS AND METHODS. Eighteen mandibular premolar roots were separated into two groups for oval and circular fiber posts systems. Post spaces were prepared and fiber posts were luted to the post spaces. Roots were cut horizontally to produce 1-mm-thick specimens. Resin cement thicknesses were determined with a metallographic optical microscope and push-out tests were done. RESULTS. No significant differences were observed in terms of push-out bond strength between the oval and circular fiber posts (P>.05) The resin cement thicknesses of the oval posts were greater than those of the circular posts group in the coronal, middle and apical specimens (P<.05). CONCLUSION. In the light of these results, it can be stated that resin cement thickness does not affect the push-out bond strength.

Characteristics of Roadside Cut-Slopes Failures along the 46th National Highway (남양주-춘천(국도 46 호선)간 도로절개면 붕괴 특성 고찰)

  • 구호본;정의진;박성욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.527-534
    • /
    • 2000
  • 136 cut slopes which extends from Namyangju to Chunchon city along the 46th national highway were investigated to analyze the influence factors affecting slope instability. Geologic and geotechnical conditions were examined and the detailed investigation were carried out for fifty five failed slopes. failure mode (wedge failure, planar failure, circular failure, sheet eroison and rock falls) are examined with respect to slope inclination, rock type, weathering grade and discontinuity patterns. It is suggested that the failure modes and their dimensions have relations to the morphology and geologic conditions of the slopes. Wedge failure has highest is the most frequent failure mode and falls, sheet erosions, planar failures and circular in descending order of failure percentage. Wedge failure is most dominant failure type over all lithology except quartzite formation. In slopes of well foliated and banded gneiss, failure ratio of wedge is up to 50% ca. Failure ratio(number of rock fall/number of total failure) of rock fall increases with increase fo slope inclinations and decrease of weathering grade. Dimension analyses of failed slopes shows wedge and circular failure has higher value of D/L and D/H than planar failure and sheet erosion.

  • PDF

Stress and strain analysis of functionally graded plates with circular cutout

  • Dhiraj, Vikash Singh;Jadvani, Nandit;Kalita, Kanak
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.81-92
    • /
    • 2016
  • Stress concentration is an interesting and essential field of study, as it is the prime cause of failure of structural parts under static load. In the current paper, stress and strain concentration factors in unidirectional functionally graded (UDFGM) plate with central circular cutout are predicted by carrying out a finite element study on ANSYS APDL platform. The present study aims to bridge the lacuna in the understandings of stress analysis in perforated functionally graded plates. It is found that the material variation parameter is an important criterion while designing a perforated UDFGM plate. By selecting a proper material variation parameter and direction of material gradation, the stress and strain concentrations can be significantly reduced.

Effects of Laser Parameters and Workpiece Conditions on Cutting Characteristics of Solid Wood and Wood-based Panel(II) - Specific Cutting Energy and Surface Qualities - (레이저변수(變數)와 피삭재조건(被削材條件)이 목재(木材) 및 목질(木質)보드의 절삭특성(切削特性)에 미치는 영향(影響)(II) - 비절삭(比切削)에너지와 절삭면(切削面)의 품질(品質) -)

  • Sim, Jae-Hyeon;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.38-50
    • /
    • 1998
  • Laser cutting tests were conducted to investigate the laser cutting characteristics of solid woods such as 25mm-thick white oak(Quercus acutissima) and maple(Acer mono), and wood-based panels such as 15mm-thick medium density fiberboard and particleboard. Test variables were laser power, cutting speed, grain direction, and moisture content. Specific cutting energy was measured and the qualities of cut surface were estimated in constant laser power. Specific cutting energy of white oak was larger than that of maple, and specific cutting energy of medium density fiberboard was smaller than that of particleboard. For both white oak and maple, specific cutting energy of green wood was smaller than that of air-dried wood because weight loss of moisture evaporation in green wood was larger than that in air-dried wood. In laser-cut surface, wood cells were not deformed and damaged, but in circular saw-cut surface fibers were pushed out and cut, and wood cells were deformed severely. However, mechanical surface roughness of saw-cut surface was smoother than that of laser-cut surface because of the existence of undeformed cell cavity in laser-cut surface.

  • PDF

Identification of Forming Limits of Sheet Metals for Automobile Parts by Asymmetric Deep-drawing Experiments (비대칭 시편의 딥드로잉 실험에 의한 박판금속의 성형한계도)

  • Heo, Hun;Lee, Chung-Ho;Jeong, Jae-Ung
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.81-93
    • /
    • 1998
  • Identification of forming limits of sheet metals is an important task to be done before the sheet metal forming processes. The information of the forming limit is indispensable for design of deformed shapes and related forming processes. This procedure becomes more important than ever as the auto-body becomes complicated and the number of auto-body parts is reduced for lower production cost. To identify the forming limit of sheet metals stretching with a hemispherical punch has gained popularity because of the convenient experimental procedure. The stretching experiment however has localized deformation or the shear band is originated from the non-unifrom deformation in the critical circum-stance instead of the absolute criterion. More accurate information of the forming limit therefore could be obtained by a more appropriate experiment to the real process. In this papaer an experiment program is devised to practivally identify the forming limits of sheet metals for auto-body parts. The experiment program contains not only stretching but deep-drawing Both forming experiments use the same hemispherical punch while they use different specimens. Deep-drawing experiments use speci-mens cut out in circular arc on both sides of circular blank to make it torn during the deep-drawing They also use speciments cut out straight in one side of a circular blank to make it deformed unevenly which causes local deformation during the deep-drawing. The experimental result demonstrates that the forming limit diagrams in the two cases show difference in their effective magnitude. The forming limit curve from deep-drawing is located lower than that from stretching. It is noted from the result that the deep-drawing process causes acceleration of localized deformation in comparison with the stretching process. From the experimental result the maximum value of forming limit could be pre-dicted for safe design.

  • PDF

Development of An Onion Peeler (I) - Root cutting equiment - (양파 박피기 개발(I))

  • 민영봉;김성태;정태상;최선웅;김정호
    • Journal of Biosystems Engineering
    • /
    • v.27 no.4
    • /
    • pp.301-310
    • /
    • 2002
  • With a purpose to manufacture an onion peeler, the root cutting equipment of the onion could be attached to a prototype onion peeler was developed. Before the experiment, the distribution of the dimensions of the Korean native onion were measured. And some types of the blades to cut and remove the root of the onion were designed and such characteristics as feasible revolution, conveying speed, and power requirement were investigated. From the result of the test, the selected one among the various cutters was the wing type blade with the round blade to cut out the root and with the vertical blade to cut a circular line. The optimum operating conditions of the wing type blade were revealed the revolution with no load was at 630 rpm, and the conveying speed was 0.08 m/s. Under these conditions, the maximum torque was 5.25 kg·m and the power requirement was 33 W, respectively.

Study of the Characteristics of Dot Pattern Designs in Modern Fashion (현대패션에 나타난 도트문양의 표면유형과 특성에 관한 연구)

  • Kim, Sun-Young
    • Journal of the Korean Society of Costume
    • /
    • v.59 no.4
    • /
    • pp.41-53
    • /
    • 2009
  • This study analyzed expression types of dot patterns and derived out inherent characteristics to provide fundamental resources for advancement of high value added creative designs. As a result of the study, Firstly, the circular motive was used to form silhouettes or as a symbol of a decoration. Secondly, a simple form and color dot pattern was used to create one side, or a circular shaped accessory was used to be recognized as a construction line or a decoration line. Thirdly, textile printing is mainly used but handicraft and decorative images were used to add vitality through piece technique, embroidery, collage, cut-out, patch work, etc. Fourthly, different circular motives were integrated, partitioned and duplicated for abstract geometrical images. Fifthly, variations were added by mixing different dot patterns that are arranged regularly and irregularly in different sizes and gaps creating compounded designs with handicraft touches, different angles or on top of each other. Sixthly, hybrid images were created with rearrangement of dot patterns and by adding floral shapes, stripes or other abstract and geometrical shapes. Such various and creative attempts construct new formative beauty in fashion design and I believe that it can establish the development of unique images that satisfies the taste of today's consumers.